Биосинтез инсулина

Содержание

Механизм действия инсулина

Биосинтез инсулина

Инсулин является гормоном, имеющим пептидную природу и образующимся в клетках поджелудочной железы. Он влияет на обменные процессы, происходящие в организме и охватывающие почти все ткани.

Одна из его ключевых функций заключается в уменьшении в крови концентрации глюкозы, поэтому недостаток этого гормона часто провоцирует развитие такой патологии, как сахарный диабет.

При абсолютной нехватке инсулина у пациента развивается заболевание 1 типа, а при относительной недостаточности гормона возникает диабет 2 типа.

Инсулин: состав гормона

Образующийся в поджелудочной железе гормон является предшественником инсулина. В процессе нескольких последовательных друг за другом химических реакций он преобразуется в активную форму гормона, которая способна выполнять предназначенные для нее функции в организме.
Каждая молекула инсулина имеет в своем составе 2 полипептидные цепи, связанные дисульфидными мостиками (С-пептидом):

  1. А-цепь. Она включает в себя 21 аминокислотный остаток.
  2. В-цепь. В ее состав входит 30 аминокислотных остатков.

Инсулин отличается высокой скоростью оказываемого действия, поэтому в течение часа с момента выработки синтезируется. Стимулом для производства гормона является поступление пищи с большим количеством углеводов, в результате чего происходит скачок в крови значения глюкозы.

Инсулин у каждого биологического вида имеет структурные отличия, поэтому его роль в регулировании углеводного обмена тоже разная. Наиболее схожим с человеческим гормоном считается инсулин свиньи, отличающийся от него лишь 1 аминокислотным остатком. Инсулин быка отличается от гормона человека тремя такими остатками.

Как регулируется значение глюкозы в крови?

Оптимальная концентрация сахара поддерживается благодаря выполнению всеми системами организма своих функций. Тем не менее, главная роль в таком процессе принадлежит действию гормонов.

На концентрацию глюкозы воздействуют 2 группы гормонов:

  1. Инсулин (естественный гипергликемический гормон) – снижает ее уровень.
  2. Гормоны гипергликемической группы (например, гормон роста, глюкагон, адреналин) – увеличивают ее уровень.

В тот момент, когда значение глюкозы становится ниже физиологического уровня, выработка инсулина замедляется. В случае критического падения сахара в крови, начинается высвобождение гормонов гипергликемической группы, которые направляют глюкозу из клеточных запасов. Для подавления дальнейшего выделения в кровь инсулина активизируются гормоны стресса и адреналин.

На выработку, действие инсулина или утрату восприимчивости клеточных мембран к этому гормону могут оказать влияние следующие факторы:

  • Нарушение процесса созревания инсулина, а также его рецептора;
  • Возникновение измененных молекул, а также нарушение их биологических функций;
  • Присутствие в организме антител к действию гормона, что приводит к потере связи между гормоном и его рецептором;
  • Деградация рецепторов гормона;
  • Нарушение процесса эндоцитоза гормона с рецептором.

Любое препятствие на пути поступления сигнала от инсулина в клетку способно полностью или частично нарушить его влияние на весь процесс метаболизма. Важно понимать, что в таком состоянии организма высокая концентрация гормона не может исправить ситуацию.

Влияние инсулина и его роль

Инсулин выполняет важные функции в организме и оказывает многогранное действие на обменные процессы.

Воздействие гормона в зависимости от оказанного эффекта принято делить на 3 основные группы:

  • Анаболическое;
  • Метаболическое;
  • Антикатаболическое.

Метаболическое воздействие проявляется следующим образом:

  1. Усиливается поглощение клетками поступающих в организм веществ. Глюкоза является одним из важных компонентов, поэтому ее усвоение позволяет регулировать в крови уровень сахара.
  2. Повышается объем синтеза такого полисахарида, как гликоген.
  3. Снижается интенсивность гликогенеза (уменьшается формирование глюкозы в печени из различных веществ).

Анаболическое действие гормона призвано усилить биосинтез белковых компонентов и репликацию ДНК (дезоксирибонуклеи́новой кислоты). Инсулин под влиянием этого свойства помогает превратить глюкозу в такие органические соединения, как триглицериды. Это позволяет создать условия, необходимые для скопления жиров в момент недостатка гормона.

Антикатаболическое влияние охватывает 2 направления:

  • Понижает степень гидролиза белков (деградации);
  • Сокращает проникновение жирных кислот в кровяные клетки;
  • Под воздействием инсулина в крови сохраняется нормальный уровень сахара

.

Эффект от воздействия инсулина проявляется через специальный рецептор и возникает спустя разное по продолжительности время:

  • Через короткий период (минуту или даже секунды), когда выполняются функции транспортировки, ингибирование ферментов, синтез рибонуклеиновой кислоты, фосфорилирование белков;
  • Спустя длительное время (до нескольких часов) в случае синтеза ДНК, белка и процесса клеточного роста.

Как действует гормон?

Инсулин участвует практически во всех процессах обмена, но основное его действие касается метаболизма углеводов. Влияние на эти вещества, оказываемое гормоном, связано во многом с усилением скорости доставки через клеточные мембраны излишек глюкозы.

В результате этого активизируются инсулиновые рецепторы, и приводится в действие внутриклеточный механизм, способный влиять напрямую на усвоение клетками глюкозы.

Механизм действия инсулина основан на урегулировании численности мембранных белков, доставляющих эти вещества.

Транспортировка глюкозы тканям полностью зависит от инсулина. Эти ткани имеют огромное значение для человеческого организма и отвечают за такие важные функции, как дыхание, движение, кровообращение и формирование запаса энергии, выделенной из поступившей пищи.

Рецепторы гормона, расположенные в клеточной мембране, имеют следующий состав:

  1. Альфа-субъединицы (2 штуки). Они расположены вне клетки.
  2. Бета-субъединицы (2 штуки). Они пересекают клеточную мембрану, затем переходят в цитоплазму.

Эти составляющие образованы двумя полипептидными цепочками, соединены между собой дисульфидными связями и характеризуются тирозинкиназной активностью.

После связи рецептора с инсулином происходят такие события, как:

  1. Конформация рецептора подлежит изменению, затрагивая сначала только а-субъединицу. В результате такого взаимодействия появляется тирозинкиназная активность у второй субъединицы (бета), запускается цепь реакций для усиления действия ферментов.
  2. Рецепторы в процессе соединения между собой формируют микроагрегаты или пятна.
  3. Происходит интернализация рецепторов, в результате чего появляется соответствующий сигнал.

Если инсулин содержится в плазме в больших количествах, то численность рецепторов сокращается, а чувствительность клеток к гормону падает. Снижение регуляции числа рецепторов объясняется их потерей в период проникновения инсулина в клеточную мембрану. В результате такого нарушения возникает ожирение или развивается такое заболевание, как сахарный диабет (чаще всего 2 типа).

Виды гормона и продолжительность его действия

Кроме естественного инсулина, вырабатываемого поджелудочной железой, некоторым людям приходится применять гормон в форме лекарственного препарата. Средство поступает в клетки путем выполнения соответствующих подкожных инъекций.

Продолжительность действия такого инсулина делится на 3 категории:

  1. Начальный период, когда инсулин попадает в кровь пациента. В это время гормон имеет сахароснижающий эффект.
  2. Пик. В этот период достигается максимальная точка снижения глюкозы.
  3. Длительность. Этот промежуток длится дольше, чем предыдущие периоды. За это время уменьшается содержание в крови сахара.

В зависимости от продолжительности эффекта от инсулина, применяемый в медицине гормон может быть следующих видов:

  1. Базальный. Он действует целые сутки, поэтому в день достаточно одной инъекции. У базального гормона отсутствует пик действия, он не понижает сахар на какое-то время, а позволяет поддерживать фоновое значение глюкозы в течение всего дня.
  2. Болюсный. Гормон является более оперативным средством воздействия на значение в крови глюкозы. Попадая в кровь, он сразу производит необходимый эффект. Пик действия болюсного гормона приходится как раз на приемы пищи. Он используется пациентами диабета первого типа, чтобы скорректировать уровень сахара с помощью соответствующей дозы инъекции.

Дозировка инсулина не должна рассчитываться пациентами с диабетом самостоятельно. Если количество единиц гормона значительно превысит норму, то может случиться даже летальный исход. Спасти жизнь можно будет только в случае пребывания пациента в ясном сознании. Для этого нужно сделать инъекцию глюкозы еще до наступления диабетической комы.

Инъекции гормона: распространенные ошибки

Эндокринологам часто приходится слышать во время практики жалобы от пациентов на неэффективность инъекций инсулина. Сахар в крови может и не снизиться, если в процессе введения гормона была нарушена техника.

Спровоцировать это могут следующие факторы:

  1. Использование просроченного инсулина, когда уже истек срок годности.
  2. Нарушение основных правил транспортировки и условий хранения препарата.
  3. Смешивание разных типов гормона в 1 флаконе.
  4. Попадание воздуха в подготовленный для инъекции шприц.
  5. Нанесение спирта на участок для инъекции, что приводит к разрушению инсулина.
  6. Применение поврежденного шприца или иглы во время инъекции.
  7. Быстрое извлечение иглы сразу после введения гормона, что могло привести к потере части лекарства. В результате в организм инсулин поступил в недостаточном количестве. Такая ошибка может стать причиной гипергликемии (резкому подъему сахара). В противном случае, когда инсулина поступило больше, чем требовалось для нейтрализации глюкозы, наступает гипогликемия (падение сахара). Оба состояния опасны для пациентов, страдающих диабетом.

Статью просмотрели 3 265 раз

Источник: http://diabet-med.su/mexanizm-dejstviya-insulina.html

Инсулин – самый молодой гормон

Биосинтез инсулина

Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа.

Синтез

Инсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N-конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи.

На данном этапе в молекуле проинсулина присутствуют А-цепь, В-цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для “созревания” гормона .

По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина.

В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn2+.

Схема синтеза инсулина

Около 15% молекул проинсулина поступает в кровоток. Проинсулин обладает более слабой активностью (около 1:10), но большим периодом полувыведения (около 3:1), по сравнению с инсулином. Поэтому повышение его уровня может вызывать гипогликемические состояния, что наблюдается при инсулиномах.

Регуляция синтеза и секреции

Секреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β-клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина.

Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина:

  • первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается,
  • вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в 15-25 раз.

Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β-клеток подключается к секреции инсулина.

Индукция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК.

Активация секреции инсулина

1. После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе),2. Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества,3. В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови,

4. Накопление АТФ стимулирует закрытие ионных K+-каналов, что приводит к деполяризации мембраны,

5. Деполяризация мембраны приводит к открытию потенциал-зависимых Ca2+-каналов и притоку ионов Ca2+ в клетку,
6. Поступающие ионы Ca2+ активируют фосфолипазу C и запускают кальций-фосфолипидный механизм проведения сигнала с образованием ДАГ и инозитол-трифосфата (ИФ3),
7. Появление ИФ3 в цитозоле открывает Ca2+-каналы в эндоплазматической сети, что ускоряет накопление ионов Ca2+ в цитозоле,
8. Резкое увеличение концентрации в клетке ионов Ca2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу,
9. Далее происходит распад кристаллов, отделение ионов Zn2+ и выход молекул активного инсулина в кровоток.

 Схема внутриклеточной регуляции синтеза инсулина при участии глюкозы

Описанный ведущий механизм может корректироваться в ту или иную сторону под действием ряда других факторов, таких как аминокислоты, жирные кислоты, гормоны ЖКТ и другие гормоны, нервная регуляция.

Из аминокислот на секрецию гормона наиболее значительно влияют лизин и аргинин. Но сами по себе они почти не стимулируют секрецию, их эффект зависит от наличия гипергликемии, т.е. аминокислоты только потенциируют действие глюкозы.

Свободные жирные кислоты также являются факторами, стимулирующими секрецию инсулина, но тоже только в присутствии глюкозы. При гипогликемии они оказывают обратный эффект, подавляя экспрессию гена инсулина.

Логичной является положительная чувствительность секреции инсулина к действию гормонов желудочно-кишечного тракта – инкретинов (энтероглюкагона и глюкозозависимого инсулинотропного полипептида), холецистокинина, секретина, гастрина, желудочного ингибирующего полипептида.

Клинически важным и в какой-то мере опасным является усиление секреции инсулина при длительном воздействии соматотропного гормона, АКТГ и глюкокортикоидов, эстрогенов, прогестинов. При этом возрастает риск истощения β-клеток, уменьшение синтеза инсулина и возникновение инсулинзависимого сахарного диабета. Такое может наблюдаться при использовании указанных гормонов в терапии или при патологиях, связанных с их гиперфункцией.

Нервная регуляция β-клеток поджелудочной железы включает адренергическую и холинергическую регуляцию.

Любые стрессы (эмоциональные и/или физические нагрузки, гипоксия, переохлаждение, травмы, ожоги) повышают активность симпатической нервной системы и подавляют секрецию инсулина за счет активации α2-адренорецепторов.

С другой стороны, стимуляция β2-адренорецепторов приводит к усилению секреции.

Также выделение инсулина повышается n.vagus, в свою очередь находящегося под контролем гипоталамуса, чувствительного к концентрации глюкозы крови.

Мишени

Рецепторы инсулина находятся практически на всех клетках организма, кроме нервных, но в разном количестве. Нервные клетки не имеют рецепторов к инсулину, т.к. последний просто не проникает через гематоэнцефалический барьер.

Наибольшая концентрация рецепторов наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты – только 40 рецепторов на клетку.

Механизм действия

После связывания инсулина с рецептором активируется ферментативный домен рецептора. Так как он обладает тирозинкиназной активностью, то фосфорилирует внутриклеточные белки – субстраты инсулинового рецептора. Дальнейшее развитие событий обусловлено двумя направлениями: MAP-киназный путь и ФИ-3-киназный механизмы действия (подробно).

При активации фосфатидилинозитол-3-киназного механизма результатом являются быстрые эффекты – активация ГлюТ-4 и поступление глюкозы в клетку, изменение активности “метаболических” ферментов – ТАГ-липазы, гликогенсинтазы, гликогенфосфорилазы, киназы гликогенфосфорилазы, ацетил-SКоА-карбоксилазы и других.

При реализации MAP-киназного механизма (англ. MAP – mitogen-activated protein) регулируются медленные эффекты – пролиферация и дифференцировка клеток, процессы апоптоза и антиапоптоза.

Скорость эффектов действия инсулина

Биологические эффекты инсулина подразделяются по скорости развития:

Очень быстрые эффекты (секунды)

Эти эффекты связаны с изменением трансмембранных транспортов:

1. Активации Na+/K+-АТФазы, что вызывает выход ионов Na+ и вход в клетку ионов K+, что ведет к гиперполяризации мембран чувствительных к инсулину клеток (кроме гепатоцитов).

2. Активация Na+/H+-обменника на цитоплазматической мембране многих клеток и выход из клетки ионов H+ в обмен на ионы Na+. Такое влияние имеет значение в патогенезе артериальной гипертензии при сахарном диабете 2 типа.

3. Угнетение мембранной Ca2+-АТФазы приводит к задержке ионов Ca2+ в цитозоле клетки.

4. Выход на мембрану миоцитов и адипоцитов переносчиков глюкозы ГлюТ-4 и увеличение в 20-50 раз объема транспорта глюкозы в клетку.

Быстрые эффекты (минуты)

Быстрые эффекты заключаются в изменении скоростей фосфорилирования и дефосфорилирования метаболических ферментов и регуляторных белков.

Печень

  • торможение эффектов адреналина и глюкагона (фосфодиэстераза),
  • ускорение гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиление синтеза жирных кислот (ацетил-SКоА-карбоксилаза),
  • формирование ЛПОНП,
  • повышение синтеза холестерина (ГМГ-SКоА-редуктаза),

Мышцы

  • торможение эффектов адреналина (фосфодиэстераза),
  • стимулирует транспорт глюкозы в клетки (активация ГлюТ-4),
  • стимуляция гликогеногенеза (гликогенсинтаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • превращение пирувата в ацетил-SКоА (ПВК-дегидрогеназа),
  • усиливает транспорт нейтральных аминокислот в мышцы,
  • стимулирует трансляцию (рибосомальный синтез белков).

Жировая ткань

  • стимулирует транспорт глюкозы в клетки (активация Глют-4),
  • активирует запасание жирных кислот в тканях (липопротеинлипаза),
  • активация гликолиза (фосфофруктокиназа, пируваткиназа),
  • усиление синтеза жирных кислот (активация ацетил-SКоА-карбоксилазы),
  • создание возможности для запасания ТАГ (инактивация гормон-чувствительной-липазы).

Медленные эффекты (минуты-часы)

Медленные эффекты заключаются в изменении скорости транскрипции генов белков, отвечающих за обмен веществ, за рост и деление клеток, например:

1. Индукция синтеза ферментов в печени

  • глюкокиназы и пируваткиназы (гликолиз),
  • АТФ-цитрат-лиазы, ацетил-SКоА-карбоксилазы, синтазы жирных кислот, цитозольной малатдегидрогеназы (синтез жирных кислот),
  • глюкозо-6-фосфатдегидрогеназы (пентозофосфатный путь),

2. Индукция в адипоцитах синтеза глицеральдегидфосфат-дегидрогеназы и синтазы жирных кислот.

3. Репрессия синтеза мРНК, например, для ФЕП-карбоксикиназы (глюконеогенез).

4. Обеспечивает процессы трансляции, повышая фосфорилирование по серину рибосомального белка S6.

Очень медленные эффекты (часы-сутки)

Очень медленные эффекты реализуют митогенез и размножение клеток. Например, к этим эффектам относится

1. Повышение в печени синтеза соматомедина, зависимого от гормона роста.

2. Увеличение роста и пролиферации клеток в синергизме с соматомединами.

3. Переход клетки из G1-фазы в S-фазу клеточного цикла.

Инактивация инсулина

Удаление инсулина из циркуляции происходит после его связывания с рецептором и последующей интернализации (эндоцитоза) гормон-рецепторного комплекса, в основном в печени и мышцах.

После поглощения комплекс разрушается и белковые молекулы лизируются до свободных аминокислот. В печени захватывается и разрушается до 50% инсулина при первом прохождении крови, оттекающей от поджелудочной железы.

В почках инсулин фильтруется в первичную мочу и, после реабсорбции в проксимальных канальцах, разрушается.

Гипофункция

Инсулинзависимый и инсулиннезависимый сахарный диабет. Для диагностики этих патологий в клинике активно используют нагрузочные пробы и определение концентрации инсулина и С-пептида.

Общая биохимия

Источник: https://biokhimija.ru/gormony/insulin.html

Инсулин: образование, секреция и действие

Биосинтез инсулина

Инсулин (от лат. insula — остров) — это гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови.

Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, помимо анаболического действия, инсулин обладает также и антикатаболическим эффектом.

Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа.

Образование и секреция инсулина

Главным стимулом к синтезу и выделению инсулина служит повышение концентрации глюкозы в крови.

Синтез инсулина в клетке

Синтез и выделение инсулина представляют собой сложный процесс, включающий несколько этапов. Первоначально образуется неактивный предшественник гормона, который после ряда химических превращений в процессе созревания превращается в активную форму.

Ген, кодирующий первичную структуру предшественника инсулина, локализуется в коротком плече 11 хромосомы.

На рибосомах шероховатой эндоплазматической сети синтезируется пептид-предшественник — т.н. препроинсулин. Он представляет собой полипептидную цепь, построенную из 110 аминокислотных остатков и включает в себя расположенные последовательно: L-пептид, B-пептид, C-пептид и A-пептид.

Почти сразу после синтеза в ЭПР от этой молекулы отщепляется сигнальный (L) пептид — последовательность из 24 аминокислот, которые необходимы для прохождения синтезируемой молекулы через гидрофобную липидную мембрану ЭПР. Образуется проинсулин, который транспортируется в комплекс Гольджи, далее в цистернах которого происходит так называемое созревание инсулина.

Созревание является наиболее длительным этапом образования инсулина. В процессе созревания из молекулы проинсулина с помощью специфических эндопептидаз вырезается C-пептид — фрагмент из 31 аминокислоты, соединяющий B-цепь и A-цепь. То есть молекула проинсулина разделяется на инсулин и биологически инертный пептидный остаток.

В секреторных гранулах инсулин, соединяясь с ионами цинка, образует кристаллические гексамерные агрегаты.

Регуляция образования и секреции инсулина

Главным стимулятором освобождения инсулина является повышение уровня глюкозы в крови. Дополнительно образование инсулина и его выделение стимулируется во время приёма пищи, причём не только глюкозы или углеводов.

Секрецию инсулина усиливают аминокислоты, особенно лейцин и аргинин, некоторые гормоны гастроэнтеропанкреатической системы: холецистокинин, ГИП, ГПП-1, а также такие гормоны, как глюкагон, АКТГ, СТГ, эстрогены и др., препараты сульфонилмочевины.

Также секрецию инсулина усиливает повышение уровня калия или кальция, свободных жирных кислот в плазме крови.

Понижается секреция инсулина под влиянием соматостатина.

Бета-клетки также находятся под влиянием автономной нервной системы:

    • Парасимпатическая часть (холинергические окончания блуждающего нерва) стимулирует выделение инсулина;
    • Симпатическая часть (активация ?2-адренорецепторов) подавляет выделение инсулина.

Причём синтез инсулина заново стимулируется глюкозой и холинергическими нервными сигналами.

Действие инсулина

Так или иначе инсулин затрагивает все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается именно обмена углеводов.

Основное влияние инсулина на углеводный обмен связано с усилением транспорта глюкозы через клеточные мембраны.

Активация инсулинового рецептора запускает внутриклеточный механизм, который напрямую влияет на поступление глюкозы в клетку путём регуляции количества и работы мембранных белков, переносящих глюкозу в клетку.

В наибольшей степени от инсулина зависит транспорт глюкозы в двух типах тканей: мышечная ткань (миоциты) и жировая ткань (адипоциты) — это т.н. инсулинозависимые ткани. Составляя вместе почти 2/3 всей клеточной массы человеческого тела, они выполняют в организме такие важные функции как движение, дыхание, кровообращение и т. п., осуществляют запасание выделенной из пищи энергии.

Физиологические эффекты инсулина

Инсулин оказывает на обмен веществ и энергии сложное и многогранное действие. Многие из эффектов инсулина реализуются через его способность действовать на активность ряда ферментов.

Инсулин — это единственный гормон, снижающий содержание глюкозы в крови, это реализуется через:

    • усиление поглощения клетками глюкозы и других веществ;
    • активацию ключевых ферментов гликолиза;
    • увеличение интенсивности синтеза гликогена — инсулин форсирует запасание глюкозы клетками печени и мышц путём полимеризации её в гликоген;
    • уменьшение интенсивности глюконеогенеза — снижается образование в печени глюкозы из различных веществ;
    • усиливает поглощение клетками аминокислот (особенно лейцина и валина);
    • усиливает транспорт в клетку ионов калия, а также магния и фосфата;
    • усиливает репликацию ДНК и биосинтез белка;
    • усиливает синтез жирных кислот и последующую их этерификацию — в жировой ткани и в печени инсулин способствует превращению глюкозы в триглицериды; при недостатке инсулина происходит обратное — мобилизация жиров;
    • Антикатаболические эффекты;
    • подавляет гидролиз белков — уменьшает деградацию белков;
    • уменьшает липолиз — снижает поступление жирных кислот в кровь.

Регуляция уровня глюкозы в крови

Поддержание оптимальной концентрации глюкозы в крови — результат действия множества факторов, сочетание слаженной работы почти всех систем организма. Однако главная роль в поддержании динамического равновесия между процессами образования и утилизации глюкозы принадлежит гормональной регуляции.

В среднем уровень глюкозы в крови здорового человека колеблется от 2,7 до 8,3 ммоль/л, однако сразу после приёма пищи концентрация резко возрастает на короткое время.

Две группы гормонов противоположно влияют на концентрацию глюкозы в крови:

    1. Единственный гипогликемический гормон — инсулин;
    1. Гипергликемические гормоны (такие как глюкагон, гормон роста и адреналин), которые повышают содержание глюкозы в крови.

Когда уровень глюкозы опускается ниже нормального физиологического значения, высвобождение инсулина из B-клеток замедляется (но в норме никогда не останавливается).

Если же уровень глюкозы падает до опасного уровня, высвобождаются так называемые контринсулярные (гипергилкемические) гормоны (наиболее известный — глюкагон ?-клеток панкреатических островков), которые вызывают высвобождение глюкозы из клеточных запасов в кровь. Адреналин и другие гормоны стресса сильно подавляют выделение инсулина в кровь.

Точность и эффективность работы этого сложного механизма является непременным условием нормальной работы всего организма, здоровья.

Длительное повышенное содержание глюкозы в крови (гипергликемия) является главным симптомом и повреждающим фактором сахарного диабета. Гипогликемия — понижение содержания глюкозы в крови — часто имеет ещё более серьёзные последствия.

Так, экстремальное падение уровня глюкозы может быть чревато развитием гипогликемической комы и смертью.

Гипергликемия

Гипергликемия — увеличение уровня сахара в крови.

В состоянии гипергликемии увеличивается поступление глюкозы как в печень, так и в перефирические ткани. Как только уровень глюкозы зашкаливает, поджелудочная железа начинает вырабатывать инсулин.

Гипогликемия

Гипогликемия — патологическое состояние, характеризующееся снижением уровня глюкозы периферической крови ниже нормы (обычно, 3,3 ммоль/л). Развивается вследствие передозировки сахароснижающих препаратов, избыточной секреции инсулина в организме. Гипогликемия может привести к развитию гипогликемической комы и привести к гибели человека.

См. также

    • Углеводы и гликемический индекс
    • Инсулиноподобный фактор роста-1

Источник: http://www.shealth.ru/insulin.html

ИНСУЛИН

Биосинтез инсулина

ИНСУЛИН (лат. insula остров, островок) — гормон поджелудочной железы; относится к группе белковопептидных гормонов.

В 1900 г. Л. В. Соболев доказал, что островки Лангерганса поджелудочной железы (см.) являются местом образования вещества, регулирующего углеводный обмен в организме. В 1921 г. Ф. Бантинг и Бест (С. Н.

Best) получили экстракт из островковой ткани поджелудочной железы, содержащий инсулин. В 1925 г. И. был получен в кристаллическом виде. В 1955 г. Сенгер (F. Sanger) изучил аминокислотную последовательность и установил структуру И.

крупного рогатого скота и свиней.

Относительная молекулярная масса мономера П.— ок. 6000. Молекула И. содержит 51 аминокислоту и состоит из двух цепей; цепь с N-концевым глицином называется А-цепью и состоит из 21 аминокислоты, вторая — B-цепь — состоит из 30 аминокислот. А- и B-цепи соединены дисульфидной связью, целостность к-рой играет большую роль в сохранении биол, активности молекулы И. (формулу см. ниже).

Молекула инсулина человека

Наиболее близок по аминокислотному составу к И. человека И. свиньи, молекула к-рого отличается всего лишь на одну аминокислоту в B-цепи (вместо треонина в 30-м положении находится аланин).

Биосинтез инсулина, регуляция секреции инсулина

И. синтезируется в базофильных инсулоцитах (бета-клетках) островков Лангерганса поджелудочной железы из своего предшественника — проинсулина. Впервые проинсулин был обнаружен Стайнером (D. F. Steiner) в конце 60-х гг. Проинсулин — одноцепочечный полипептид с относительной мол. массой ок. 10 000, содержит более 80 аминокислот.

Проинсулин представляет собой молекулу П., как бы замкнутую пептидом, который был назван соединяющим, или C-пептидом; этот пептид делает молекулу И. биологически неактивной. По иммунол, характеристике проинсулин близок к И.

Проинсулин синтезируется на рибосомах инсулоцитов, затем по цистернам цитоплазматической сети молекула проинсулина передвигается к пластинчатому комплексу (комплекс Гольджи), от к-рого отделяются вновь образованные секреторные гранулы, содержащие проинсулин.

В секреторных гранулах под действием ферментов от проинсулина отделяется С-пептид и образуется И. Процесс ферментативного превращения проинсулина протекает в. несколько стадий, в результате которых образуется инсулин, промежуточные формы про-инсулина и С-пептид.

Все эти вещества обладают разной биол, и иммунной активностью и могут участвовать в регуляции различных видов обмена веществ. Нарушение процессов превращения проинсулина в И. приводит к изменению соотношения этих веществ, появлению анормальных форм И. ив результате этого — к сдвигу в регуляции обмена веществ.

Поступление гормонов в кровь регулируется несколькими механизмами, одним из которых для И. (пусковым сигналом) является повышение содержания глюкозы в крови (см. Гипергликемия); важная роль в регуляции поступления И. принадлежит микроэлементам, гормонам жел.-киш. тракта (в основном секретину), аминокислотам, а также ц. н. с. (см. Гормоны).

Превращение инсулина в организме

При выходе в русло крови часть И. образует комплексы с белками плазмы крови — так наз. связанный инсулин, другая часть остается в форме свободного инсулина. Л. К. Старосельцева и сотр. (1972) установили, что существуют две формы связанного И.: одна форма — комплекс И. с трансферрином, другая — комплекс И.

с одним из компонентов альфа-глобулинов сыворотки крови. Свободный и связанный И. отличны друг от друга по биол., иммунным и физ.-хим. свойствам, а также по влиянию на жировую и мышечную ткани, которые являются органами-мишенями и называются инсулинчувствительным и тканями. Свободный И. реагирует с антителами к кристаллическому П.

, стимулирует поглощение глюкозы мышечной и в какой-то степени жировой тканью. Связанный И. не реагирует с антителами к кристаллическому П., стимулирует поглощение глюкозы жировой тканью и практически не влияет на этот процесс в мышечной ткани. Связанный И.

отличается от свободного скоростью метаболизма, поведением в электрофоретическом поле, при гельфильтрации и диализе.

При экстракции сыворотки крови солянокислым этанолом было получено вещество, по биол, эффектам подобное И. Однако это вещество не реагировало с антителами, полученными к кристаллическому П., и поэтому было названо «неподавляемая инсулиноподобная активность плазмы», или «инсулиноподобное вещество».

Изучению инсулиноподобной активности придается большое значение; «неподавляемая инсулиноподобная активность плазмы» многими авторами рассматривается как одна из форм И. Благодаря процессам связывания И. с белками сыворотки крови обеспечивается его доставка к тканям. Кроме того, связанный И. является как бы формой хранения гормона в крови и создает резерв активного И. в русле крови.

Определенное соотношение свободного и связанного И. обеспечивает нормальную жизнедеятельность организма.

Количество И., циркулирующего в русле крови, определяется не только скоростью секреции, но и скоростью его метаболизма в периферических тканях и органах. Наиболее активно процессы метаболизма И. протекают в печени.

Существует несколько предположений о механизме этих процессов в печени; установлено, что имеются два этапа — восстановление дисульфидных мостиков в молекуле инсулина и протеолиз с образованием биологически неактивных пептидных фрагментов и аминокислот.

Существует несколько инсулининактивирующих и инсулиндеградирующих ферментных систем, участвующих в метаболизме И.

К ним относятся инсулининактивирующая ферментная система [протеиндисульфидная редуктаза (глютатион)] и инсулиндеградирующая ферментная система, к-рая представлена тремя типами протеолитических ферментов.

В результате действия протеиндисульфидной редуктазы происходит восстановление — S— S-мостиков и образование А- и B-цепей И. с последующим протеолизом их до отдельных пептидов и аминокислот. Помимо печени, метаболизм И. происходит в мышечной и жировой тканях, почках, плаценте. Скорость процессов метаболизма может служить контролем за уровнем активного И. и играет большую роль в патогенезе сахарного диабета. Период биол, полураспада И. человека — ок. 30 мин.

Биологическое действие инсулина

И. является универсальным анаболическим гормоном. Один из наиболее ярких эффектов И. — его гипогликемическое действие. И. оказывает влияние на все виды обмена веществ: стимулирует транспорт веществ через клеточные мембраны, способствует утилизации глюкозы и образованию гликогена, ингибирует глюконеогенез (см.

Гликолиз), тормозит липолиз и активирует липогенез (см. Жировой обмен), повышает интенсивность синтеза белка. И., обеспечивая нормальное окисление глюкозы в цикле Кребса (легкие, мышцы, почки, печень), способствует образованию макроэргических соединений (в частности, АТФ) и поддержанию энергетического баланса клеток.

И, необходим для роста и развития организма (действует в синергизме с соматотропный гормоном гипофиза).

Все биол, эффекты И. самостоятельны и независимы друг от друга, однако в физиол, условиях конечный эффект И.

складывается из непосредственной стимуляции биосинтетических процессов и одновременного снабжения клеток «строительным» материалом (напр., аминокислотами) и энергией (глюкозой). Многообразные эффекты И.

реализуются путем взаимодействия его с рецепторами клеточных мембран и передачи сигнала (информации) в клетку к соответствующим ферментным системам.

Физиол, антагонистом И. в регуляции углеводного обмена и обеспечении оптимального для жизнедеятельности организма уровня глюкозы в крови является глюкагон (см.), а также некоторые другие гормоны (щитовидной железы, надпочечников, соматотропный гормон).

Нарушения в синтезе и секреции инсулина могут быть разного характера и иметь различное происхождение. Так, недостаточность секреции И. приводит к гипергликемии и развитию сахарного диабета (см.

Диабет сахарный, этиология и патогенез). Избыточное образование И. наблюдается, напр., при гормонально-активной опухоли, исходящей из бета-клеток панкреатических островков (см.

Инсулома), и выражается клинически симптомами гиперинсулинизма (см.).

Методы определения инсулина

Методы определения инсулина условно можно разделить на биологические и радиоиммунные. Биол, методы основаны на стимуляции поглощения глюкозы инсулинчувствительными тканями под действием И. Для биол, метода используется диафрагмальная мышца и эпидидимальная жировая ткань, получаемая от крыс чистых линий. Кристаллический И.

или исследуемая сыворотка крови человека и препараты диафрагмальной мышцы или эпидидималыюй жировой ткани (лучше изолированные жировые клетки, полученные из эпидидимальной жировой ткани) в буферном р-ре, содержащем определенную концентрацию глюкозы, помещаются в инкубатор.

По степени погло щения глюкозы тканью и соответственно убыли ее из инкубируемой среды рассчитывают содержание И. в крови, используя при этом стандартную кривую.

Свободная форма И. усиливает поглощение глюкозы в основном на диафрагмальной мышце, с к-рой практически не реагирует связанная форма И., поэтому, используя диафрагмальный метод, можно определить количество свободного И. Поглощение глюкозы эпидидимальной жировой тканью стимулируется в основном связанной формой И.

; но с жировой тканью частично может реагировать и свободный И., поэтому данные, полученные при инкубации с жировой тканью, можно называть общей инсулинной активностью. Физиол, уровни свободного и связанного И.

колеблются в очень широких пределах, что, видимо, связано с индивидуальным типом гормональной регуляции обменных процессов, и могут в среднем составлять в норме 150—200 мкед/мл свободного И. и 250—400 мкед/мл связанного И.

Радиоиммунный метод определения И. основан на конкуренции меченого и немеченого И. в реакции с антителом к И. в анализируемой пробе. Количество радиоактивного И., связанного с антителами, будет обратно пропорционально концентрации И. в анализируемой пробе.

Наиболее удачным вариантом радиоиммунного метода оказался метод двойных антител, который условно (схематически) можно представить следующим образом. Антитела против И. получают на морских свинках (так наз. антитела первого порядка) и соединяют их с меченым И. (1251).

Полученный комплекс повторно соединяют с антителами второго порядка (полученными от кролика). Это обеспечивает стабильность комплекса и возможность реакции замещения меченого И. на немеченый. В результате этой реакции немеченый И. связывается с антителами, а меченый И.

переходит в свободный р-р.

Многочисленные модификации этого метода основаны на этапе отделения меченого И. от комплекса с немеченым И. Метод двойных антител положен в основу приготовления готовых наборов для радиоиммунного метода определения И. (фирмами Англии и Франции).

Препараты инсулина

Для мед. целей И. получают из поджелудочной железы крупного рогатого скота, свиней и китов. Активность И. определяют биол, путем (по способности понижать содержание сахара в крови у здоровых кроликов).

За единицу действия (ЕД), или интернациональную единицу (ИЕ), принимают активность 0,04082 мг кристаллического инсулина (стандарта). И. легко соединяется с двухвалентными металлами, особенно с цинком, кобальтом, кадмием, и может образовывать комплексы с полипептидами, в частности с протамином.

Это свойство было использовано при создании препаратов И. пролонгированного действия.

По длительности действия различают три типа препаратов И. Препаратом короткого действия (ок. 6 час.) является инсулин отечественного производства (И. крупного рогатого скота и свиней). Препарат средней продолжительности действия (10—12 час.

) — суспензия цинк-инсулина аморфного — отечественный препарат, аналогичный зарубежному препарату семиленте. К препаратам длительного действия относятся протамин-цинк-инсулин для инъекций (16—20 час. действия), суспензия инсулин-протамина (18— 24 час.), суспензия цинк-инсулина (до 24 час.

), суспензия цинк-инсулина кристаллического (до 30—36 час. действия).

Фармакол, характеристику наиболее употребляемых препаратов И. и формы их выпуска — см. Гормональные препараты, таблица.

Показания и противопоказания

И. является специфическим противодиабетическим средством и применяется в основном при сахарном диабете; абсолютным показанием является наличие кетоацидоза и диабетической комы. Выбор препарата и его дозировка зависят от формы и тяжести течения болезни, возраста и общего состояния больного. Подбор доз и лечение И.

проводится под контролем содержания сахара в крови и в моче и наблюдением за состоянием больного. Передозировка И. грозит резким падением содержания сахара в крови, гипогликемической комой. Конкретные показания к применению тех или иных препаратов И. при сахарном диабете у взрослых и детей — см. Диабет сахарный, лечение.

Препараты И. применяются для лечения некоторых психических болезней. В СССР инсулиношоковое лечение шизофрении было применено в 1936 г. А. С. Кронфельдом и Э. Я. Штернбергом. С появлением нейролептиков лечение И. стало методом выбора — см. Шизофрения.

В небольших дозах И. иногда назначают при общем истощении, фурункулезе, рвоте беременных, гепатитах и др.

Все препараты И. пролонгированного действия вводят только под кожу (или внутримышечно). Внутривенно (напр., при диабетической коме) можно вводить только р-р инсулина кристаллического для инъекций.

Нельзя вводить суспензии цинк-инсулина (и другие препараты И.

пролонгированного действия) в одном шприце с р-ром инсулина для инъекций; в случае необходимости вводят р-р инсулина для инъекций отдельным шприцем.

Противопоказание — аллергия к И.; относительные противопоказания — заболевания, протекающие с гипогликемией. Необходима осторожность при лечении И. больных, у которых наблюдаются коронарная недостаточность и нарушения мозгового кровообращения.

Библиография: Биохимия гормонов и гормональной регуляции, под ред. Н. А. Юдаева, с. 93, М., 1976; Ньюсхолм Э.И Старт К. Регуляция метаболизма, пер. с англ., с. 387 и др., М., 1977; Проблемы медицинской энзимологии, под ред. G. Р. Мардашева, с. 40, М., 1970, библиогр.; Руководство по клинической эндокринологии, под ред. В. Г. Баранова, Л.

, 1977; Сахарный диабет, под ред. В. Р. Клячко, с. 130, М., 1974; Старосельцева Л. К. Различные формы инсулина в организме и их биологическое значение, в кн.: Совр. вопр, эндокрин., под ред. H. А. Юдаева, в. 4, с. 123, М., 1972; Юдаев Н. А. Биохимия гормональной регуляции обмена веществ, Вестн. АН СССР, JVa 11, с. 29, 1974; Banting F. G., а. В e s t С. H.

Internal secretion of pancreas, J. Lab. clin. Med., v. 7, p. 251, 1922; Cerasi E. a. Luft R. Diabetes mellitus — a disorder of cellular information transmission, Horm. metaboi. Res., v. 4, p. 246, 1970, bibliogr.; Insulin, ed. by R. Luft, Gentofte, 1976; Steiner D. F. a, o. Proinsulin and the biosynthesis of insulin, Recent Progr. Hormone Res., v. 25, p.

207, 1969, bibliogr.

В. С. Ильин, Л. К. Старосельцева

Источник: https://xn--90aw5c.xn--c1avg/index.php/%D0%98%D0%9D%D0%A1%D0%A3%D0%9B%D0%98%D0%9D

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.