Нейрон, синапс и глия как материальные носители энграммы памяти

Нейроны и синапсы

Нейрон, синапс и глия как материальные носители энграммы памяти

Основным компонентом нервной системы в целом и мозга в частности является нейрон или нервная клетка, «клетки мозга». Нейрон – это электрически возбудимая клетка, которая обрабатывает и передает информацию посредством электрохимической сигнализации.

В отличие от других клеток, нейроны никогда не делятся и не отмирают, чтобы их заменили новые. По той же причине они обычно не могут быть восстановлены после потери, хотя есть несколько исключений.

В отличие от других клеток организма, большинство нейронов в человеческом мозге способны делиться только для того, чтобы создавать новые клетки (процесс, называемый нейрогенезом) во время развития плода и в течение нескольких месяцев после рождения.

Эти клетки мозга могут увеличиваться в размерах до возраста около восемнадцати лет, но они, по существу, рассчитаны на всю жизнь.

Интересно, что единственной областью мозга, где нейрогенез, как было показано, продолжается на протяжении всей жизни, является гиппокамп, область, необходимая для кодирования и хранения памяти.

Объем памяти человека

Средний человеческий мозг имеет около 100 миллиардов нейронов (или нервных клеток) и нейроглии (или глиальные клетки), которые служат для поддержки и защиты нейронов.

Каждый нейрон может быть связан с 10 000 других нейронов, передавая сигналы друг другу через 1000 триллионов синаптических соединений, что, по некоторым оценкам, эквивалентно компьютеру с процессором со скоростью 1 триллион бит в секунду.

Оценки объема памяти человеческого мозга сильно варьируются от 1 до 1000 терабайт (для сравнения, 19 миллионов томов в Библиотеке Конгресса США представляют около 10 терабайт данных).

Передача информации в мозге, например, во время процессов кодирования и извлечения памяти, достигается с помощью комбинации химических веществ и электричества. Это очень сложный процесс, включающий множество взаимосвязанных этапов, но краткий обзор можно произвести.
Схема нейрона. Изображение из Википедии

Типичный нейрон обладает сомой (клеточным телом содержащим клеточное ядро), дендритами (Дендрит — ветвящийся отросток нервной клетки (нейрона), воспринимающий сигналы от других нейронов, рецепторных клеток или непосредственно от внешних раздражителей.

) (разветвлёнными отростками, прикрепленными к клеточному телу в сложном ветвящемся «дендритном дереве») и одним аксоном (Аксон — это нейрит (длинный цилиндрический отросток нервной клетки), по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.

) (длинным цилиндрическим отростком, который может быть в тысячи раз длиннее сомы).

Каждый нейрон поддерживает градиент напряжения на своей мембране из-за метаболически обусловленных различий в ионах натрия, калия, хлорида и кальция внутри клетки, каждый из которых имеет различный заряд.

Если напряжение существенно изменяется, генерируется электрохимический импульс, называемый потенциалом действия (или нервным импульсом). Эта электрическая активность может быть измерена и отображена в виде волновой формы, называемой мозговой волной или ритмом мозга.

Этот импульс быстро распространяется по аксону клетки и передается через специализированное соединение, известное как синапс (Синапс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой.) , к соседнему нейрону, который получает его через свои дендриты.

Синапс представляет собой сложное мембранное соединение или разрыв (фактический разрыв, также известный как синаптическая щель, составляет порядка 20 нанометров, или 20 миллионных миллиметра), используется для передачи сигналов между клетками, и поэтому известен как синаптическая связь.

Хотя синаптические связи аксон-дендрит являются нормой, возможны и другие варианты (например, дендрит-дендрит, аксон-аксон, дендрит-аксон). Типичный нейрон срабатывает 5 – 50 раз каждую секунду.

Таким образом, каждый отдельный нейрон может образовывать тысячи связей с другими нейронами, давая мозгу более 100 триллионов синапсов (до 1000 триллионов, по некоторым оценкам).

Функционально связанные нейроны соединяются друг с другом, образуя нейронные сети. Однако связи между нейронами не статичны, они меняются со временем.

Чем больше сигналов посылается между двумя нейронами, тем сильнее растет связь, и поэтому с каждым новым опытом и каждым запоминающимся событием или фактом мозг слегка перестраивает свою физическую структуру.

В детстве, и особенно в подростковом возрасте, происходит процесс, известный как «синаптическая обрезка».

Несмотря на то, что мозг продолжает расти и развиваться, общее количество нейронов и синапсов сокращается до 50%, удаляя ненужные нейронные структуры и позволяя им заменяться более сложными и эффективными структурами, более подходящими к требований взрослой жизни.

Синаптическая передача. Изображение из Википедии

Взаимодействие нейронов не только электрическое, но и электрохимическое. Каждый аксонный терминал содержит тысячи связанных мембраной мешочков, называемых везикулами (Синаптические везикулы (или синаптические пузырьки) находятся в пресинаптических границах в нейронах и складируют нейромедиаторы.

) , которые, в свою очередь, содержат тысячи молекул нейротрансмиттеров (Нейромедиаторы (нейротрансмиттеры, посредники, «медиаторы») — биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса от нервной клетки через синаптическое пространство между нейронами, а также, например, от нейронов к мышечной ткани или железистым клеткам.) .

Нейротрансмиттеры – это химические посыльные которые передают, усиливают и модулируют сигналы между нейронами и другими клетками.

  • Двумя наиболее распространенными нейротрансмиттерами в мозге являются аминокислоты глутамат и ГАМК;
  • другими важными нейротрансмиттерами являются ацетилхолин, допамин, адреналин, гистамин, серотонин и мелатонин.

При стимуляции электрическим импульсом высвобождаются нейромедиаторы различных типов и пересекают клеточную мембрану в синаптическую щель между нейронами.

Эти химические вещества затем связываются с химическими рецепторами в дендритах принимающего (постсинаптического) нейрона.

В процессе они вызывают изменения проницаемости клеточной мембраны для конкретных ионов, открывая специальные ворота или каналы, которые впускают поток заряженных частиц (ионы кальция, натрия, калия и хлорида).

Это влияет на потенциальный заряд принимающего нейрона, который затем запускает новый электрический сигнал в принимающем нейроне. Весь процесс занимает менее одной пятисотой секунды.

Таким образом, сообщение в мозгу преобразуется, когда оно перемещается от одного нейрона к другому, от электрического сигнала к химическому сигналу и обратно, в непрерывную цепь событий, которая является основой всей деятельности мозга.

Электрохимический сигнал выпущенный определенным нейротрансмиттером может быть как стимулирующим (например, ацетилхолин, глутамат, аспартат, норадреналин, гистамин), так и ингибирующим (например, ГАМК, глицин, сератонин), а некоторые (например, дофамин) могут оказывать и то и другое действие.

Тонкие вариации в механизмах нейромедиации позволяют мозгу реагировать на различные требования, предъявляемые к нему, включая кодирование, консолидацию, хранение и извлечение воспоминаний.

Общие сведения о глиальных клетках (нейроглия, глия)

Как уже упоминалось, помимо нейронов, мозг содержит примерно равную массу глиальных клеток (нейроглия или просто глия), наиболее распространенными типами которых являются олигодендроциты, астроциты (Астроцит — тип нейроглиальной клетки звездчатой формы с многочисленными отростками.) и микроглии.

Поскольку они намного меньше, чем нейроны, их в 10 раз больше, а различные области мозга имеют более высокую или более низкую концентрацию глий.

Раньше считалось, что роль глиальных (Нейроглия (глия) — совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в мозге примерно равно количеству нейронов.) клеток ограничивается физической поддержкой, питанием и восстановлением нейронов центральной нервной системы.

Тем не менее, более недавние исследования показывают, что глия, особенно астроциты, на самом деле выполняют гораздо более активную роль в коммуникации мозга и нейропластичности, хотя степень и механизм этой роли все еще неопределенны, и значительный объем современных исследований мозга в настоящее время сосредоточен на глиальных клетках.

Источники:

Все материалы носят ознакомительный характер. [Отказ от ответственности krok8.com]

Источник: https://krok8.com/nejrony-i-sinapsy/

Количество синапсов у нейрона

Нейрон, синапс и глия как материальные носители энграммы памяти

1. Составляющие клетки 2. Отростки 3. Метаболизм в нейроне 4. Какие бывают нейроны

В этой статье расскажем, что такое нейрон, какие функции он выполняет, как различаются между собой эти клетки.

Составляющие клетки

Нейрон состоит из:

Строение тела (сомы) предполагает ядро и цитоплазму, содержащую органеллы (участвующие в синтезе протеинов).

Снаружи оно покрыто оболочкой из двух липидных слоев, которые пропускают жирорастворимые вещества.

На поверхности располагаются протеины, необходимые для того, чтобы нейрон мог воспринимать раздражение. Саму оболочку также пронизывают белки – интегральные – они формируют ионные каналы.

В нервной клетке располагается цитоскелет, состоящий из нейрофибрилл. В его функции входит поддержка формы нейрона, а по его нитям перемещаются органеллы и нейромедиаторы.

Нейроны объединяются в отдельные группы, ансамбли, центры, ядра – по наличию той единой деятельности, которую они выполняют. В коре полушарий, мозжечке нервные клетки образуют слои, каждый из которых подчинен выполнению определенной функции.

Между нейронами находятся скопления глиальных клеток (нейроглия/ глия). Они составляют примерно 40% всего объема головного мозга. Такие клетки в 3–4 раза меньше нервных. У человека с возрастом происходит процесс замещения нейронов глией.

Отростки

У нейронов присутствуют аксоны (в количестве одна штука) и дендриты (один или несколько).

Аксон

Является длинным выростом цитоплазмы. По нему сигналы следуют от тела к органам и другим нейронам. Диаметр его составляет несколько микронов, а длина у человека составляет несколько десятков сантиметров. Рост зависит от сомы: при повреждении периферические его части могут отмирать, а основная продолжает функционировать.

Строение аксоплазмы (аксональной протоплазмы) предполагает наличие нейрофибрилл (осуществляющих опорные и дренажные функции нейронов), микротрубочек (структур из белка), митохондрий и эндоплазматической сети.

У человека аксоны покрыты миелиновой (мякотной) оболочкой и образуют мякотные нервные волокна. В такой оболочке находятся олигодендроциты, между которыми существуют небольшие части, освобожденные от нее. На них возникает потенциал действия.

Импульс способен распространяться по мякотным волокнам ступенчато – благодаря этому повышается скорость распространения информации.

Дендриты

Короткие и разветвленные отростки. Эти части нейрона являются основными для образования синапсов, которые влияют на нейрон и передают возбуждение к соме. Дендриты, в отличие от аксонов, не обладают миелиновой оболочкой.

То, сколько входных сигналов получает нервная клетка, зависит от разветвленности дендритной сети и ее сложной структуры.

Основные функции дендритов заключаются в увеличении поверхности для синапсов, что дает возможность интеграции большого количества информации, поступающей к нервной клетке.

Кроме того, они способны генерировать потенциалы действия, воздействовать на возникновение таких потенциалов в аксонах.

Передача импульса идет от дендрита или сомы к аксону. После того, как потенциал действия сгенерирован, он передается от начальной аксональной части обратно к дендритам. Когда аксон сочленяется с сомой последующего нейрона, контакт называют аксо-соматическим. Если с дендритами – аксо-дендритический, а с аксоном другого нейрона – аксо-аксональный.

Строение аксонов подразумевает наличие терминалей – так называемых концевых отделов. Они ветвятся и входят в контакт с другими клетками в организме (мышечными, железистыми и т. п.).

У аксона имеется синаптическое окончание – часть, которая контактирует с клеткой-мишенью.

Постсинаптическая оболочка такой клетки совместно с синаптическим окончанием формирует синапс, посредством которого передается возбуждение и благодаря которому осуществляется взаимодействие клеток между собой.

Сколько связей способен установить один нейрон? Одна нервная клетка, обладающая возможностью взаимодействовать, может осуществлятьсвязей.

Метаболизм в нейроне

Строение нервной клетки подразумевает присутствие также белков, жиров и углеводов. Их основные функции заключены в обеспечении обмена веществ клетки, являются энергетическим, пластическим источником для нее.

Питательные вещества попадают в клетку в виде водного раствора. Продукты обмена веществ удаляются из него в виде такого же раствора.

Протеины предназначены для информационных и пластических целей. В ядре располагается ДНК, в цитоплазме – РНК. Интенсивность метаболизма протеинов в ядре выше, чем в цитоплазме. Этот процесс характеризует высокая скорость обновления протеинов в новых структурных частях (коре), в отличие от старых (мозжечке, спинном мозге).

Жиры и жироподобные вещества служат энергетическим, пластическим материалом. Они обеспечивают высокое электрическое сопротивление в мякотной оболочке. Их обмен осуществляется медленно, а возбуждение нервной клетки (например, во время усиленных умственных нагрузок, переутомлении у человека) грозит уменьшением количества липидов.

Углеводы являются главным энергетическим источником. Глюкоза при поступлении преобразуется в гликоген, вновь превращающийся в глюкозу. Запаса гликогена для покрытия всех затрат не всегда хватает, и это ведет к тому, что источником энергии у человека становится глюкоза в крови.

В нейроне находятся соли натрия, магния, кальция, калия, медь, марганец. Все они участвуют в активации различных ферментов.

Какие бывают нейроны

Существуют различные классификации.

Распространена классификация по числу количества отростков, их расположению.

  1. Мультиполярные нейроны – наиболее многочисленны в ЦНС. Это клетки с одним аксоном и несколькими дендритами.
  2. Биполярные нейроны головного мозга – такие клетки, у которых в наличии по одному аксону и дендриту. Расположены в глазной сетчатке, обонятельной эпителиальной ткани и луковице, слуховом ядре и вестибулярном.

В спинном мозге встречаются и другие виды (безаксонные, псевдоуниполярные).

Ученые выносят отдельно зеркальные нейроны.

Это клетки, в которых возбуждение происходит не только при выполнении действия, но и при наблюдении за его выполнением у другого (эксперименты проводились пока лишь на животных).

Изучение деятельности этих клеток является перспективным направлением в биологии: считается, что они являются основными в процессе обучения языку, понимании действий и эмоций другого человека.

В зависимости от функции, клетки делятся на:

Отдельно отмечаются также секреторные, функции которых заключаются в продуцировании нейрогормонов (к примеру, в гипоталамо-гипофизарной системе).

Афферентные

Отвечают за передачу сигналов от рецепторов в ЦНС, бывают первичные и вторичные. Расположение тел первых – в спинальных ядрах. Они непосредственно связаны с рецепторами.

Сомы вторичных нейронов расположены в зрительных буграх и ответственны за передачу сигнала в отделы, лежащие выше. Напрямую такие нейроны с рецепторами не связаны, а получают импульсы от других нейроцитов.

Нейрон, относящийся к этой группе, также могут называть – чувствительный, сенсорный, рецепторный.

Реакция клетки проходит 5 стадий:

  1. трансформация импульса внешнего раздражения;
  2. генерирование чувствительного потенциала;
  3. его иррадиация по нервной клетке;
  4. появление генераторного потенциала;
  5. генерирование нервного сигнала.

Двигательные

Эфферентные (двигательные, моторные, центробежные) передают импульс к остальным органам и центрам. Например, нервные клетки двигательной зоны конечного мозга – пирамидные – посылают сигнал мотонейронам спинного мозга.

особенность двигательных нейронов – аксон с большой протяженностью, который обладает высокой скоростью передачи возбуждения. Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы.

Эти нейронные связи обеспечивают такие внутриполушарные и межполушарные отношения, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.

Выделяют преганглионарные и постганглионарные двигательные нейроны вегетативной нервной системы.

Преганглионарные нейроны симпатического отдела расположены в спинном мозге, а парасимпатического – в среднем и продолговатом мозге. Постганглионарные находятся в стенках иннервируемых органах и нервных узлах.

Преганглионарные аксоны (в составе нескольких черепных нервов) образуют синапсы с постагнглионарными нейронами.

Интернейроны

Вставочные нейроциты (ассоциативные, промежуточные, интернейроны) осуществляют взаимодействие между клетками: обрабатывают информацию, которую получают от чувствительных нейронов, отправляют ее к другим промежуточным или двигательным нейронам. Они меньше по разме­рам, чем эфферентные или афферентные, могут быть веретенообразными, звездчатыми, корзинчатыми. Их аксоны короткие, а дендритная сеть обширна.

Это самые распространенные клетки в нервной системе (примерно 95%) и головного мозга, в частности (большая часть всех нейронов больших полушарий – вставочные). Терминали их аксонов заканчиваются на нервных клетках своего центра, что обеспечивает их интеграцию.

Один вид ассоциативных нейроцитов получает информацию от других центров, после чего распространяет ее на клетки своего центра. То, сколько параллельных путей задействовано в передаче сигнала, влияет на время сохранения информации в центре и усиление влияния импульса.

Другие вставочные нейроциты получают сигнал от моторных собственного центра, после чего отсылают его назад в свой же центр. Таким образом, образуются обратные связи, которые позволяют продолжительно сохранять информацию.

Тормозные промежуточные приходят в возбуждение посредством прямых импульсов, которые поступают в их центр, или сигналов, следующих из этого же центра по обратным связям.

У человека и высших животных миелиновая мембрана и совершенный метаболизм обеспечивают незатухающее возбуждение по нервным волокнам. Безмиелиновые оболочки не могут обеспечить скорую компенсацию энергетического расхода на возбуждение, поэтому распространение сигнала идет, ослабевая. Это характерно для животных с низкоорганизованной нервной системой.

Как видно, непосредственными нервными клетками, которые локализованы в головном мозге, являются интернейроны, а остальные (двигательные, в том числе преганглионарные, постганглионарные, и чувствительные первичные и вторичные) регулируют деятельность мозга вне его самого.

Нейрон является структурной единицей нервной системы и, в частности, головного мозга. Сложное строение нервной клетки обеспечивает прием, анализ и посыл информации.

Между нейронами существуют тесные связи, которые обеспечивают слаженную работу всего механизма системы.

Самыми многочисленными в головном мозге являются промежуточные (выделенные по функциональным особенностям) и мультиполярные нейроны (по строению).

Рекомендуем

Источник: http://vasherezume.ru/kolichestvo-sinapsov-u-nejrona/

Новая концепция памяти: сначала энграммы, а потом синапсы

Нейрон, синапс и глия как материальные носители энграммы памяти

Два года назад нейроучёные MIT обнаружили, что при определённых типах ретроградной амнезии воспоминания о конкретном событии сохраняются в мозге в энграммных клетках, даже если память не получается восстановить с помощью естественных «позывных».

Это явление предполагает пересмотр существующих моделей формирования памяти, что и предлагают исследователи в новой статье, в которой они подробно описывают то, как «тихие энграммы» формируются и повторно активируются.

Обычно считается, что процессы обучения и запоминания состоят из трёх основных этапов: кодирования событий в сетях мозга, хранения закодированной информации и последующего её извлечения, когда это необходимо. Но оказалось, что это немного не так.

«Один из основных выводов этой работы заключается в том, что конкретная память хранится в определённой структурной связности между ансамблями энграммных клеток, которые лежат вдоль определённого анатомического пути.

Этот вывод провокационный, потому что существующая догма предполагает, что память вместо этого сохраняется с помощью синапсов», — говорит Сусуму Тонегава (Susumu Tonegawa), профессор биологии и нейронаук, директор Центра генетики нейронных сетей RIKEN-MIT в Институте обучения и памяти Пикауэра, старший автор исследования.

Исследователи также показали, что, несмотря на то что воспоминания, хранящиеся в тихих энграммах, нельзя вызвать естественным образом, они сохраняются в течение по крайней мере недели и могут быть «пробуждены» через несколько дней с помощью обработки клеток белком, который стимулирует образование синапсов.

Красным цветом обозначены энграммные клетки зубчатой извилины гиппокампа, синим – все остальные.

Скрытые воспоминания

В статье 2015 года Тонегава и его коллеги впервые показали, что воспоминания могут сохраняться даже тогда, когда блокируется синтез клеточных белков. Они обнаружили, что их можно искусственно извлечь с использованием оптогенетической техники.

Исследователи назвали эти ячейки памяти «тихими энграммами» и с тех пор обнаружили, что они также могут сформироваться и при различных нейродегенеративных заболеваниях типа болезни Альцгеймера. Работая с её мышиной моделью, учёные доказали: воспоминания остаются, только к ним теряется доступ, который в принципе можно восстановить.

На более позднем этапе изучения процесса, называемого системной консолидацией памяти, исследователи обнаружили энграммы как в гиппокампе, так и в префронтальной коре, которые кодировали одну и ту же память.

Однако соответствующие участки префронтальной коры «молчали» примерно две недели после того, как память первоначально записалась, но при этом участки гиппокампа активировались сразу.

Со временем всё становилось наоборот, и замолкали участки гиппокампа.

Ансамбли памяти

В новом исследовании, опубликованном в PNAS, авторы продвинулись ещё дальше в том, как формируются эти тихие энграммы, как долго они держатся и как их можно обратно активировать.

Увеличенное изображение демонстрирует гиппокампальные CA3 энграммные клетки памяти (красный). Через один день после конкретного обучения память тестируется, и характерные для этого CA3 клетки активируются и светятся зелёным цветом.

В клетках СА3, жёлтых по перекрытию, во время вспоминания произошла реактивация памяти.

Подобно их первому исследованию 2015 года они обучали мышей помнить, в какой клетке они испытывали шоковую реакцию.

Сразу после тренировки ингибировался синтез клеточных белков, и мыши таким образом забывали о полученном опыте.

Но когда под воздействием света клетки памяти активировались (а всем животным предварительно в мембраны нейронов встраивался светочувствительный белок), мыши замирали в страхе даже в нейтральном месте. Оказалось, что эти воспоминания можно восстанавливать на протяжении восьми дней после первоначального обучения.

Этими результатами поддержалась гипотеза Тонегавы о том, что усиление синаптических соединений, необходимое для первоначальной кодировки памяти, не является необходимым для последующего длительного хранения.

Вместо этого он говорит, что память хранится в конкретном шаблоне соединений, образованных между ансамблями энграммных клеток.

Эти соединения, которые очень быстро формируются при кодировании, отличаются от синаптического усиления, которое происходит позже (в течение нескольких часов после события) с помощью синтеза необходимых белков.

Задний гиппокамп получает пространственную и временную информацию из области мозга, находящейся чуть выше и известной как медиальная энторинальная кора (MEC). Зелёным окрашены энграммные клетки этой зоны, которые хранят долговременную память о страхе и обладают светочувствительным белком channelrhodopsin-2.

Это поставило вопрос о том, зачем тогда после кодирования синтезируются белки. Учитывая, что тихие энграммы не извлекаются естественным путём, исследователи полагают, что основная цель белкового производства – обеспечить возможность естественной реакции на вызовы, чтобы память работала максимально эффективно.

Анна Хоружая

Ссылка на источник

Источник: https://alev.biz/news/science-news/neurosciences/novaya-kontseptsiya-pamyati-snachala-engrammy-a-potom-sinapsy/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.