Простые эфиры

Простые эфиры: определение, формула, свойства

Простые эфиры

Простые эфиры – это органические соединения, в состав которых входят углеводородные радикалы $R$ и $R'$, соединенные атомом кислорода. Простые эфиры можно рассматривать как производные спиртов.

Общая формула эфира $R-O-R'$, $Ar-O-R$ или $Ar-O-Ar$. Углеводородные радикалы могут быть одинаковыми или разными.

$CH_3-O-CH_3$ – диметиловый эфир;

Рисунок 1. Феноксибензол. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Простейший алкилариловый эфир – метилфениловый эфир (анизол). Автор24 — интернет-биржа студенческих работ

Наиболее важное практическое значение имеют следующие циклические эфиры:

Рисунок 3. Эпоксиэтан. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Тетрагидрофуран. Автор24 — интернет-биржа студенческих работ

Рисунок 5. Диоксан. Автор24 — интернет-биржа студенческих работ

Простые эфиры могут быть:

  • симметричными, если оба радикала одинаковые (дифениловый, диэтиловый эфиры);
  • несимметричными, если радикалы разные (метил-этиловый, метилфениловый эфиры).

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

В простых эфирах угол между связями $C-O-C$ не равен 180$\circ$С. Поэтому дипольные моменты двух $C-O$-связей не компенсируют друг друга. В результате у простых эфиров небольшой суммарный дипольный момент.

Большинство простых эфиров газообразные или жидкие вещества. Но есть и исключения, например, феноксибензол.

Простые эфиры и алканы с таким же молекулярным весом имеют близкие значения температуры кипения. Однако у простых эфиров температуры кипения и плавления значительно ниже, чем у изомерных спиртов.

Например: температура кипения н-гептана – 98$\circ$С, метил-н-пентилового эфира – 100$\circ$С и н-гексилового спирта – 157$\circ$С.

Рисунок 6. Температуры плавления и кипения некоторых простых эфиров. Автор24 — интернет-биржа студенческих работ

В простых эфирах водород связан только с углеродом и отсутствуют водородные связи, в отличие от спирта. Поэтому эфиры практически не смешиваются с водой. Однако растворимость спиртов и простых эфиров в воде примерно одинакова.

Например, н-бутиловый спирт и диэтиловый эфир растворяются в воде в соотношении 8 г на 100 г воды. Растворимость простых эфиров в воде обусловлена образованием водородных связей между молекулами воды и молекулами простого эфира.

Простые эфиры хорошо растворяют органические вещества.

Абсолютный эфир

Абсолютный эфир – это эфир, в котором нет следов влаги и спирта (например, диэтиловый эфир $C_2H_5-O-C_2H_5$, используемый в реакции Гриньяра). Абсолютный эфир можно получить перегонкой обычного простого эфира над концентрированной сульфатной кислотой, которая удаляет спирт, воду, перекиси. В последствии абсолютный эфир хранят над металлическим натрием.

Анализ простых эфиров

Химическое поведение алифатических и ароматических простых эфиров соответствует поведению родственных углеводородов. Простые эфиры отличаются от углеводородов по растворимости в холодной концентрированной сульфатной кислоте, что обусловлено способностью простых эфиров образовывать оксониевые соли.

Если простой эфир уже описали, то его можно идентифицировать по физическим свойствам или химически, расщеплением при нагревании с концентрированной иодистоводородной кислотой и последующим распознованием продуктов реакции.

Ароматические эфиры можно перевести в твердые продукты нитрования или бромирования и сравнить их температуры плавления с ранее описанными производными.

Расщепление простого эфира иодистоводородной кислотой используют для определения числа алкоксильных групп в алкилариловом эфире по методу Цейзеля.

Для распознавания простого эфира проводят спектральный анализ. В инфракрасном спектре простого эфира нет характерной $O-H$-полосы спиртов, но присутствует сильная полоса $C-O$ в области 1060-1300 см${-1}$: для алкиловых эфиров 1060-1150см${-1}$, для ариловых и виниловых эфиров 1200-1275 см${-1}$:

Рисунок 7.

Применение некоторых простых эфиров

Применение простых эфиров основано на их свойстве хорошо растворять органические вещества (смолы, жиры и т.д.).

Диэтиловый эфир (техническое название «серный эфир») применяют:

  • в качестве реакционной среды при проведении органических синтезов;
  • для экстрагирования некоторых веществ (например, спиртов из водных растворов);
  • как растворитель синтетических и природных смол, солей целлюлозы при производстве пороха;
  • как компонент топлива в авиации;
  • в медицине для ингаляционного и местного наркоза.

Диизопропиловый эфир:

  • является прекрасным растворителем животных жиров, минеральных и растительных масел, синтетических и природных смол;
  • применяют как добавку к моторному топливу, повышая этим октановое число;
  • используют для выделения урана от продуктов его деления;
  • для экстрагирования уксусной кислоты из водных растворов.

Анизол и фенетол используют как промежуточные соединения при получении лекарств, красителей, душистых веществ. Из фенетола получают фенетидин и его производные, применяемые в медицине как жаропонижающие вещества.

Дифениловый эфир (дифенилоксид) применяют как теплоноситель в качестве смеси даутерм.

Циклический эфир диоксан:

  • хороший растворитель ацетилцеллюлозы, растительных и минеральных жиров и масел, восков, красок;
  • используют как реакционную среду для органических синтезов;
  • применяют при стабилизации 1,1,1-трихлорэтана для его транспортировки в алюминиевых емкостях и хранении.

Источник: https://spravochnick.ru/himiya/spirty_prostye_efiry_tioly_i_sulfidy/prostye_efiry_opredelenie_formula_svoystva/

Простые эфиры

Простые эфиры
статьи

Простые эфиры – класс органических соединений (см. ХИМИЯ ОРГАНИЧЕСКАЯ), содержащих фрагмент R–O–R', в котором две органические группы соединены атомом кислорода. Прилагательное «простые» в названии эфиров помогает отличить их от другого класса соединений, именуемого сложными эфирами.

Номенклатура простых эфиров.

Если группы R и R' в простом эфире одинаковы, то его называют симметричным, если разные – несимметричным. В название эфира включают названия органических групп, упоминая их в алфавитном порядке, и добавляют слово эфир, например, C2H5OC3H7 – пропилэтиловый эфир.

Для симметричных эфиров перед названием органической группы вводят приставку «ди», например, C2H5OC2H5 – диэтиловый эфир. Для многих эфиров часто используют тривиальные (упрощенные) названия, сложившиеся исторически.

К простым эфирам иногда относят соединения, которые содержат эфирный фрагмент С–О–С в составе циклической молекулы (рис. 1), одновременно их причисляют к другому классу соединений – гетероциклическим соединениям. Есть также соединения (см.

АЛЬДЕГИДЫ И КЕТОНЫ), в состав которых входит фрагмент С–О–С, но к классу эфиров их не относят, это полуацетали – соединения, содержащие одновременно алкокси- и гидрокси-группу у одного атома углерода: >C(OH)OR, а также ацетали – соединения, где у одного атома углерода находятся одновременно две RО-группы: >C(OR)2 (рис. 1). Наличие у одного атома углерода сразу двух химически связанных атомов О делает эти соединения непохожими по химическим свойствам на простые эфиры.

Рис. 1. Простые эфиры, содержащие эфирный фрагмент в составе циклической молекулы (чаще такие соединения относят к гетероциклическим), а также полуацетали и ацетали, содержащие эфирный фрагмент, но не относящиеся к классу простых эфиров.

Химические свойства простых эфиров.

Простые эфиры представляют собой бесцветные жидкости с характерным (так называемым эфирным) запахом, практически не смешиваются с водой и неограниченно смешиваются с большинством органических растворителей.

В сравнении со спиртами и альдегидами простые эфиры химически менее активны, например, они устойчивы к действию щелочей и щелочных металлов (металлический Na применяют даже для удаления следов воды из эфиров).

В отличие от щелочей, кислоты расщепляют эфирный фрагмент, для этого чаще применяют галоидоводороды, особенно эффективен HI. При комнатной температуре образуется и спирт, и йодистый алкил (рис. 2А), а при нагревании – йодистый алкил и вода (рис.2А), т.е. реакция протекает более глубоко.

Простые эфиры, содержащие ароматические циклы, более устойчивы к расщеплению, для них возможна только стадия, аналогичная А, образуется фенол, а йод к ароматическому ядру не присоединяется (рис. 2В).

Рис. 2. РАСЩЕПЛЕНИЕ ЭФИРНОГО ФРАГМЕНТА при действии HI

Атом кислорода в эфирном фрагменте содержит свободную электронную пару С–Ö–C, благодаря этому эфиры оказываются способными присоединять различные нейтральные молекулы, склонные к образованию донорно-акцепторных связей, атом кислорода дает для образования связи электронную пару (донор), роль акцептора, принимающего эту пару, играет присоединяющаяся молекула или ион (см. АМИНЫ). В результате возникают комплексные соединения (рис. 3).

Рис. 3. ОБРАЗОВАНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ С УЧАСТИЕМ ПРОСТЫХ ЭФИРОВ

В присутствии кислорода воздуха на свету эфиры частично окисляются с образованием перекисных соединений R–O–O–R', которые способны взрываться даже при слабом нагреве, поэтому, приступая к перегонке эфира, его предварительно обрабатывают восстановителями, разрушающими перекиси, часто вполне достаточно хранить эфир над металлическим Na.

Получение простых эфиров.

Наиболее удобный способ – взаимодействие алкоголятов щелочных металлов R'ONa с алкилгалогенидами RHal, таким методом можно получать как симметричные (рис. 4А), так и несимметричные простые эфиры (рис. 4Б).

В промышленности симметричные простые эфиры получают дегидратацией (отщеплением воды) спиртов с помощью серной кислоты (рис. 4В), этот метод позволяет получать эфиры, у которых в органической группе R не более 5 атомов С.

Рис. 4. ПОЛУЧЕНИЕ ПРОСТЫХ ЭФИРОВ

Применение простых эфиров

определяется, в основном, тем, что они очень хорошо растворяют многие жиры, смолы и лаки. Наиболее широко используют ДИЭТИЛОВЫЙ ЭФИР (С2Н5)2О, техническое название – «серный эфир», поскольку его получают в присутствии серной кислоты (рис. 4В).

Помимо применения в качестве растворителя, а также в роли реакционной среды при проведении различных органических синтезов его используют и для экстрагирования (извлечения) некоторых органических веществ, например, спиртов, из водных растворов, поскольку сам эфир очень мало растворим в воде.

В медицине серный эфир применяют для наркоза.

Диизопропиловый эфир (СН3)2СНОСН(СН3)2 используют как растворитель и как добавку к моторному топливу для повышения октанового числа.

Анизол С6Н5ОСН3 (рис. 4) и ФЕНЕТОЛ С6Н5ОС2Н5 (рис. 3) используют в качестве промежуточных продуктов при получении красителей, лекарств и душистых веществ.

Дифениловый эфир (дифенилоксид) (С6Н5)2О из-за высокой температуры кипения (259,3° С) и химической устойчивости применяют как теплоноситель.

Чтобы при остывании до комнатной температуры он не переходил в твердое состояние (его т. пл. 28–29° С), в него добавляют дифенил (С6Н5)2.

Такая смесь, называемая в технике даутермом, может работать как теплоноситель в широком диапазоне температур.

Диоксан, циклический эфир (СН2СН2О)2 (рис.), по химическим свойствам близок обычным простым эфирам, но в отличие от них неограниченно смешивается с водой и большинством органических растворителей. Растворяет жиры, воски, масла, эфиры, целлюлозы, его широко применяют и как реакционную среду при проведении различных органических синтезов.

Михаил Левицкий

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/PROSTIE_EFIRI.html

Чем отличаются простые эфиры от сложных

Простые эфиры

В органической химии существует два основных класса эфиров: простые и сложные. Это химические соединения, образующиеся при гидролизе (отщеплении молекулы воды). Простые эфиры (их еще называют этеры) получают при гидролизе соответствующих спиртов, а сложные эфиры (эстеры) – соответствующих спирта и кислоты.

Несмотря на похожее название, простые и сложные эфиры это два совершенно разных класса соединений. Их получают разными путями. Они имеют различные химические свойства. Различаются они и структурной формулой. Общими есть лишь некоторые физические свойства самых известных их представителей.

Физические свойства этеров и эстеров

Простые эфиры — малорастворимые в воде, легкокипящие жидкости, легко воспламеняются. При комнатной температуре, простые эфиры — приятно пахнущие бесцветные жидкости.

Сложные эфиры, имеющие малую молекулярную массу — легко испаряющиеся бесцветные жидкости, приятно пахнут, часто фруктами или цветами. С возрастанием карбоновой цепи ацилгруппы и спиртового остатков, их свойства становятся другими.

Такие эфиры твердые вещества. Их точка плавления зависит от длинны углеродных радикалов и структуры молекулы.

Структура простых и сложных эфиров

Оба соединения имеют простую эфирную связь (-О-), но в сложных эфирах она входит в состав более сложной функциональной группы (-COO), в которой первый атом кислорода связан с атомом карбона одинарной связью (-О-), а второй двойной (=О).

Схематически можно изобразить так:

  1. Простой эфир: R–O–R1
  2. Сложный эфир: R—COO—R1

В зависимости от радикалов в R и R1, простые эфиры делят на:

  1. Симметричные эфиры – такие у которых алкильные радикалы идентичны, например, дипропиловыйэфир, диэтиловый эфир, дибутиловый эфир и т.п.
  2. Асимметричные эфиры или смешанные – с разными радикалами, например, этилпропиловый эфир,метилфениловый эфир, бутилизопропиловый и т.д.

Сложные эфиры подразделяют на:

  1. Сложные эфиры спирта и минеральной кислоты: сульфатной (-SO3H), нитратной (-NO2) и др.
  2. Сложные эфиры спирта и карбоновой кислоты, например, С2Н5СО-, С5Н9СО-, СН3СО- и т. д.

Рассмотрим химические свойства эфиров. Простые эфиры имеют низкую реакционную способность, именно благодаря этому их часто применяют как растворители. Они реагируют только в экстремальных условиях, или с высокореакционными соединениями. В отличии от этеров, сложные эфиры более реакционноспособные. Они легко вступают в реакции гидролиза, омыления и др..

Простые эфиры

Реакция простых эфиров с галогеноводородами:

Большинство простых эфиров могут разлагаться под воздействием бромоводородной кислоти (HBr) с образованием алкилбромидов или при взаимодействии с иодоводородной кислотой (HI) с получениемалкилиодидов.

СН3—О—СН3 + НI = СН3—ОН + СН3I

СН3—ОН + НI = СН3I + Н2О

Образование оксониевых соединений:

Серная, иодная и др. сильные кислоты при взаимодействии с простыми эфирами, образуют оксониевые соединения – продукты соединения высшего порядка.

СН3—О—СН3 + HCl = (CH3)2О ∙ HCl

Взаимодействие простых эфиров с металлическим натрием:

При нагревании с основными металлами, например, металлическим натрием, простые эфиры расщепляются на алкоголяты и алкилнатрий.

СН3—О—СН3 + 2Na = СН3—ОNa + СН3—Na

Автоокисление простых эфиров:

В присутствии кислорода, простые эфиры медленно автоокисляются с образованием гидроперекиси идиалкил пероксида. Автоокисление является спонтанным окислением соединения в воздухе.

С2Н5—О—С2Н5 + О2 = СН3—СН(ООН)—О—С2Н5

Сложные эфиры

Гидролиз сложных эфиров:

В кислой среде эстер гидролизует, образуя соответствующую кислоту и спирт.

СН3—СОО—С2Н5 = СН3—СООН + Н2О

Омыление сложных эфиров:

При повышенной температуре эстеры реагируют с водными растворами сильных оснований, таких как гидроксид натрия или калия, образуя соли карбоновых кислот. Соли жрных карбоновых кислот называют мылами. Побочным продуктом реакции омыления является спирт.

СН3—СОО—С2Н5 + NaОН = СН3—СООNa + С2Н5—ОН

Реакции переэстерефикации (обмена):

Сложные эфиры вступают в реакции обмена при действии спирта (алкоголиз), кислоты (ацидолиз), или при двойном обмене, при взаимодействии двух сложных эфиров.

СН3—СОО—С2Н5 + С3Н7—ОН = СН3—СОО—С3Н7 + С2Н5—ОН

СН3—СОО—С2Н5 + С3Н7—СООН = С3Н7—СОО—С2Н5 + СН3—СООН

СН3—СОО—С2Н5 + С3Н7—СОО—СН3 = СН3—СОО—СН3 + С3Н7—СОО—С2Н5

Реакции взаимодействия с аммиаком:

Сложные эфиры могут взаимодействовать с аммиаком (NН3) с образованием амида и спирта. По тому же принципу реагируют они и с аминами.

СН3—СОО—С2Н5 + NН3 = СН3—СО—NН2 + С2Н5—ОН

Реакции восстановления эстеров:

Эфиры могут быть восстановлены водородом (Н2) в присутствии хромита меди (Cu(CrO2)2).

СН3—СОО—С2Н5 + 2Н2 = СН3—СН2—ОН + С2Н5—ОН

Источник: https://vchemraznica.ru/chem-otlichayutsya-prostye-efiry-ot-slozhnyh/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.