Развитие посттетанической потенциации

Синапсы в нейронных сетях – Пластичность синапсов

Развитие посттетанической потенциации

Страница 3 из 4

В ходе функционирования синапсы подвергаются функциональным и морфологическим перестройкам. Этот процесс назван синаптической пластичностью. Наиболее ярко такие изменения проявляются при высокочастотной, или тетанической активности, являющейся естественным условием функционирования синапсов in vivo.

Например, частота импульсации вставочных нейронов в ЦНС достигает 1000 Гц. Пластичность (рис. 6-10) может проявляться либо в увеличении (облегчении, потенциации), либо уменьшении (депрессии) эффективности синаптической передачи. Выделяют кратковременные (длятся секунды и минуты) и долговременные (длятся часы, месяцы, годы) формы синаптической пластичности.

Последние интересны тем, что они имеют отношение к процессам научения и памяти.

Рис. 6–10. Формы синаптической пластичности

Кратковременные формы синаптической пластичности

К ним относятся облегчение, потенциация, депрессия и привыкание.

Облегчение. В процессе активности в синапсах с исходно низким уровнем секреции нередко происходит увеличение амплитуды постсинаптического потенциала (ПСП).

Этот процесс — облегчение — имеет пресинаптическую природу и объясняется теорией «остаточного кальция».

Согласно этой теории, в процессе высокочастотной активности в пресинаптической терминали наблюдается повышение концентрации Са2+, вследствие чего происходит увеличение вероятности освобождения квантов нейромедиатора.

Потенциация, посттетаническая потенциация (сенситизация). Увеличение ПСП при высокочастотной активности может иметь и постсинаптическую природу.

Такой вид пластичности связан с повышением чувствительности постсинаптических рецепторов к нейромедиатору и называется потенциацией.

Величина ПСП может некоторое время (секунды и минуты) оставаться повышенной и после окончания тетанической активности. Это посттетаническая потенциация (в ЦНС — сенситизация).

Депрессия и привыкание (габитуация). В синапсах с исходно высоким уровнем секреции высокочастотная активность может приводить к уменьшению величины ПСП. Этот процесс — депрессия — связан преимущественно с истощением запаса нейромедиатора в пресинаптическом нервном окончании. Депрессия является одним из механизмов привыкания (габитуации).

Долговременные формы синаптической пластичности

Долговременная потенциация — быстро развивающееся устойчивое усиление синаптической передачи в ответ на высокочастотное раздражение. Этот вид пластичности может продолжаться дни и месяцы (рис. 6–11). Долговременная потенциация наблюдается во всех отделах ЦНС, но наиболее полно изучена на глутаматергических синапсах в гиппокампе.

Существует три основных подтипа ионотропных глутаматных рецепторов: NMDA (чувствительны к N-метил-D-аспартату), AMPA (связываются с ?-амино-3-гидрокси-5-изоксазолпропионовой кислотой) и каинатные рецепторы.

NMDA- и AMPA–рецепторы играют ключевую роль в возникновении и проявлении долговременной потенциации. NMDA–рецепторы обладают значительной проницаемостью для ионов Са, однако при нормальном уровне МПП они заблокированы ионами Mg. Магниевый блок снимается при сильной деполяризации мембраны.

AMPA рецепторы проницаемы для ионов Na+ и К+, и ответственны за возникновение ПСП в глутаматергических синапсах.

Механизм долговременной потенциации

– При высокочастотной стимуляции нейронов гиппокампа выделяется большое количество глутамата, деполяризуется постсинаптическая мембрана и происходит активация NMDA–рецепторов. Значительный кальциевый ток через эти каналы приводит к повышению концентрации ионов Са2+ в постсинаптическом нейроне.

– Ионы Са2+ связываются с внутриклеточным белком — кальмодулином (Кальмодулин — Ca2+-связывающий белок; связывание с Ca2+ в цитоплазме клеток изменяет его конформацию и превращает его в активатор ферментов, например, фосфодиэстераз или киназы лёгкой цепи миозина в ГМК; регулятор процесса сокращения ГМК и многих внутриклеточных событий). Образовавшийся комплекс активирует фермент — Са2+-кальмодулинзависимую протеинкиназу II.

– Са2+-кальмодулинзависимая протеинкиназа II фосфорилирует AMPA–рецепторы. После фосфорилирования возрастает их ионная проводимость, что приводит к увеличению постсинаптического ответа на каждый квант нейромедиатора. Кроме того, данный фермент мобилизует дополнительные AMPA–рецепторы из цитоплазмы в постсинаптическую мембрану, что приводит к увеличению квантового состава ПСП.

Долговременная депрессия также возникает в ответ на высокочастотное раздражение и проявляется в виде длительного ослабления синаптической передачи. Этот вид пластичности имеет сходный механизм с долговременной потенциацией, но развивается при более низкой внутриклеточной концентрации ионов Са2+.

В заключение приведём данные о продолжительности различных событий, происходящих в синапсах на их постинаптической стороне: из рис. 6–11 видно, что продолжительность процессов имеет широкий разброс — от 1 мсек (деполяризация постсинаптической мембраны за счёт ионотропных рецепторов) до дней (модуляция синаптической передачи).

Рис. 6–11. Сравнительная продолжительность различных событий в синапсах [2]. Логарифмическая шкала.

Источник: https://reabilitaciya.org/anatomiya-fiziologiya/normalnaya/389-cinapsy-v-nejronnyx-setyax.html?start=2

Основные свойства нервных центров

Развитие посттетанической потенциации

Различают девять Основные  свойства  нервных  центров:

1. Пространственная и временная суммация

Пространственная и временная суммация основана на свойстве каждого нейрона в центре к суммации как возбуждения, так и тор­можения.

Поскольку каждый нервный центр имеет много параллельно расположенных афферентных или входных волокон от рецептивного поля рефлекса, слабые раздражения нескольких участков рецептивного поля, в отдельности не способные реализовать рефлекс, вызывают в нейронах центра несколько ВПСП, которые суммируются, приводя к формированию на мембране нервной клетки потенциалов действия, распространяющихся по эфферентным проводникам, вызывая рефлек­торную реакцию. Это явление называют пространственной суммацией. При увеличении частоты афферентных сигналов в единицу времени амплитуда ВПСП нарастает до критического уровня из-за повышения эффективности синаптического проведения, что также вызывает воз­буждение нейронов и рефлекторный ответ на слабые частые раздра­жения.  Это явление  называют временной  суммацией;

2. Центральная задержка рефлекса

Центральная задержка рефлекса, характеризуется временем рас­пространения  информации  в  структурах   нервного  центра,   главным образом  в синапсах,  где  скорость проведения сигнала  существенно меньше, чем в нервных проводниках.  Поэтому, центральная задерж­ка рефлекса зависит от количества синапсов между нейронами цент­ра  и  представляет собой  сумму синаптических  задержек;

3. Посттетаническая потенциация

Посттетаническая потенциация — увеличение амплитуды ВПСП после серии частых (тетанизирующих) ритмических возбуждений, что связано с временной суммацией частых ВПСП и активацией синап­тического   проведения   из-за   увеличения   числа   квантов   медиатора. Длительность   состояния   потенциации   синапсов   может   достигать нескольких часов,  что играет роль в процессах обучения  и памяти:

4. Последействие и пролонгирование возбуждения

Последействие и пролонгирование возбуждения —  связаны с длительными следовыми потенциалами в нейронах, улучшением синаптического  проведения,   наличием  кольцевых   нейронных   цепей   и реверберацией возбуждения.  Все эти процессы также играют роль в процессах  обучения  и  памяти;

5. Трансформация ритма возбуждений

Трансформация ритма возбуждений, т.е. увеличение или умень­шение частоты нервных импульсов и эфферентных проводниках  (на выходе)   по   сравнению   с   частотой   афферентной   импульсации   (на входе   центра),   что   связано   с   механизмом   синаптической   передачи (трансформация  ритма  как свойство синапса)  и  интегративной де­ятельностью  нейронов;

6. Спонтанная (фоновая) электрическая активность

Спонтанная (фоновая) электрическая активность —  периоди­ческое генерирование импульсов возбуждения (потенциалов действия) нервными клетками центра в состоянии покоя, т.е. без специфичес­ кого раздражения рецептивного поля  рефлекса.

  Наличие спонтанной активности обусловлено тем, что организму не свойственно абсо­лютное отсутствие раздражителей или информационный покой, при этом за счет дивергенции и конвергенции возбуждений в нервных сетях нейроны центра всегда получают возбуждающие импульсы и от клеток других нервных центров. В происхождении спонтанной активности нейронов играют роль также метаболические сдвиги внутриклеточной среды и микроокружения клеток, а также суммация миниатюрных потенциалов постсинаптической мембраны, фор­мирующихся  из- за  «утечки»  единичных квантов  медиатора;

7. Тонус нервного центра

Тонус нервного центра — состояние некоторого уровня актив­ности  нейронов,   обеспечивающей  их   готовность   к   рефлекторной деятельности и проявляющейся в постоянной эфферентной импульсации низкой частоты к органам-эффекторам. Тонус нервных цент­ров обусловлен небольшим уровнем афферентных сигналов от раз­личных  рецептивных   полей   (т.е.

   имеет  рефлекторную   природу),   а также   действием   на   нейроны   метаболитов   и   других   гуморальных раздражителей из клеточной микросреды. Проявлением тонуса нерв­ных центров является спонтанная электрическая активность нейро­нов и некоторая фоновая активность эффекторов,  например,  тонус скелетной  мускулатуры,  гладких  мышц  сосудов и т.п.

;

8. Пластичность нервных центров

Пластичность нервных центров —  способность  перестраивать функциональные свойства для более эффективной регуляции функ­ций,   осуществления   новых,   ранее   несвойственных   этому   центру рефлексов  или  восстановления   функций  после   повреждения   части нейронов центра.

  Пластичность обеспечивает изменение эффектив­ности и направленности связей между нервными клетками, является рабочим механизмом обучения.

  В основе пластичности лежат функ­циональные особенности синапсов и мембран нейронов («трениров­ка» синапсов,  посттетаническая  потенциация,  периодичность функ­ционирования синапсов и нейронов, пространственная и временная суммация постсинаптических потенциалов), а также наличие много­численных дублирующих систем нейронов и нервных волокон;

9. Утомление нервных центров

Утомление нервных центров — снижение эффективности их деятельности в виде повышения порогов возбуждения,  связанное  с утомлением  синапсов  и  метаболическими  сдвигами типа  энергети­ческого истощения в нервных клетках.  Утомление  формируеся при чрезмерной продолжительности действия  раздражителей или их ин­тенсивности,  напряженном умственном труде или физической работе.

Источник: https://doctor-v.ru/med/basic-properties-nerve-centers/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.