Регуляция дыхания

Регуляция дыхания. Дыхательный центр

Регуляция дыхания

Физиологическая роль легочного дыхания состоит в обеспечении оптимального газового состава артериальной крови.

Для нормальной интенсивности процессов тканевого дыхания необходимо, чтобы кровь, поступающая в тканевые капилляры, всегда была насыщена кислородом и не содержала СО, в количествах, препятствующих отдаче его из тканей.

Поскольку при прохождении крови через капилляры легких между плазмой и альвеолярным воздухом уста­навливается практически почти полное газовое равновесие, то оп­тимальное содержание газов в артериальной крови определяет соот­ветствующий состав альвеолярного воздуха.

Оптимальное содержание газов в альвеолярном воздухе достигается путем изменения объема легочной вентиляции в зависимости от условий, существующих в данный  момент в  организме.

Регуляция внешнего дыхания представляет собой физиологический процесс управления легочной вентиляцией, который направлен на достижение конечного приспособительного результата — обеспечение оптимального газового состава внутренней среды организма (крови, интерстициальной жидкости, ликвора) в постоянно меняющихся условиях его жизнедеятельности.

Управление дыханием осуществля­ется по принципу обратной связи: при отклонении от оптимальных величин регулируемых параметров (рН, напряжение О, и СО,) из­менение вентиляции направлено на их нормализацию.

Избыток, например, водородных ионов во внутренней среде организма (аци­доз) приводит к усилению вентиляции,
а их недостаток (алкалоз) — к уменьшению интенсивности дыхания.

В обоих случаях изменение вентиляции является средством достижения главной цели регуляции дыхания — оптимизации газового состава внутренней среды (прежде всего,  артериальной крови).

Регуляция внешнего дыхания осуществляется путем рефлекторных реакций, возникающих в результате возбуждения специфических рецепторов, заложенных в легочной ткани и сосудистых рефлексо­генных зонах.

Центральный аппарат регуляции дыхания представля­ют нервные образования спинного мозга, продолговатого мозга и вышележащих отделов нервной системы.

Основная функция управ­ления дыханием осуществляется дыхательными нейронами ствола го­ловного мозга, которые передают ритмические сигналы в спинной мозг к мотонейронам дыхательных  мышц.

Дыхательным центром называют совокуп­ность взаимно связанных нейронов центральной нервной системы, обеспечивающих координированную ритмическую деятельность ды­хательных мышц и постоянное приспособление внешнего дыхания к изменяющимся условиям внутри организма и в окружающей среде.

Еще в начале XIX века было показано, что в продолговатом мозге на дне IV желудочка в каудальной его части (в области так называемого писчего пера) расположены структуры, разрушение которых уколом иглы ведет к прекращению дыхания и гибели ор­ганизма.

Этот небольшой участок мозга в нижнем углу ромбовидной ямки, жизненно необходимый для поддержания ритмического дыха­ния, был назван «дыхательным центром».

В дальнейшем было по­казано, что дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга, в области obex, вбли­зи stria acusticae, и состоит из двух отделов:

1. инспираторный отдел («цент­ра вдоха»),
2. экспираторный отдел  («центра выдоха»).

В ретикулярной формации продолговатого мозга обнаружены так называемые дыхательные нейроны, одни из которых разряжаются серией импульсов в фазу вдоха, другие — в фазу выдоха. В зави­симости от того, каким образом активность дыхательных нейронов коррелирует с фазами дыхательного цикла, их называют инспираторными или экспираторными.

В продолговатом мозге не найдено строго обособленных областей, которые содержали бы только инспиратерные или только экспираторные дыхательные нейроны.

Тем не менее, инспираторные и экспираторные нейроны рассматривают как две функционально различные популяции, внутри которых ней­роны связаны между собой сетью аксонов и синапсов.

Исследования активности одиночных нейронов ретикулярной формации продолго­ватого мозга привели к заключению, что область расположения дыхательного центра не может быть очерчена строго и однозначно.

Так называемые дыхательные нейроны обнаружены почти на всем протяжении продолговатого мозга. Однако, в каждой половине про­долговатого мозга есть участки ретикулярной формации, где дыха­тельные  нейроны  сгруппированы  с  более  высокой плотностью.

Дорсальная группа дыхательных нейронов

Дорсальная группа дыхательных нейронов продолговатого мозга находится вентролатеральнее ядра одиночного пучка и состо­ит, главным образом, из инспираторных нейронов.

Часть этих клеток дает нисходящие пути, идущие, в основном, в составе солитарного тракта и образующие у человека моносинаптические контакты с мотонейронами диафрагмального нерва в передних рогах 3-6 шейных сегментов спинного мозга.

Нейроны диафрагмального ядра спинного мозга разряжаются или непрерывно (с учащением, в фазу вдоха) или залпами, подобно активности дыхательных нейронов продолговатого мозга. Движения диафрагмы, обеспечивающие от 70 до 90% дыхательного объема, связаны именно с нисходящими вли­яниями дорсальной группы инспираторных нейронов продолговатого мозга.

Вентральная группа дыхательных нейронов

Вентральная группа дыхательных нейронов расположена в области обоюдного и ретроамбигуального ядер. Нейроны этой группы посылают нисходящие волокна к мотонейронам межребер­ных и брюшных мышц. Инспираторные мотонейроны спинного мозга концентрируются, главным образом, во 2- 6, а экспираторные — в 8- 10 грудных сегментах.

В вентральной группе нейронов продолго­ватого мозга находятся также эфферентные преганглионарные ней­роны блуждающего нерва, обеспечивающие синхронные с фазами дыхания изменения просвета дыхательных путей.

Максимум актив­ности нейронов блуждающего нерва, вызывающей повышение тонуса гладких мышц воздухоносных путей, наблюдается в конце выдоха, а минимум — в конце вдоха.

В продолговатом мозге обнаружены дыхательные нейроны с раз­личным характером ритмической активности.

Только у части инспи­раторных и экспираторных нейронов начало разряда и длительность серии импульсов строго совпадают с периодом соответствующей фазы дыхательного цикла, Однако, при всем разнообразии видов возбуж­дения разных дыхательных нейронов продолговатого мозга у каждо­го из них характер ритмической активности остается, как правило, постоянным.
На этом основании различают:

а) «Полные» инспира­торные и экспираторные нейроны, ритмическое возбуждение кото­рых по времени точно совпадает с соответствующей фазой дыхания;
б) «Ранние» инспираторные и экспираторные нейроны, дающие ко­роткую серию импульсов до начала вдоха или выдоха;
в) «Поздние«, проявляющие залповую активность уже после начала инспирации или экспирации:
г) «Инспираторно- экспираторные«, начинающие возбуждаться в фазе вдоха и остающиеся активными в начале вы­доха;
д) «Экспираторно-инспираторные«, активность которых начи­нается во время вдоха и захватывает начало выдоха;
е) «Непрерыв­ные«, работающие без пауз, но с увеличением частоты импульсов во время  вдоха или выдоха  (рис.8.9).

Рис.8.9. Активность различных групп дыхательный нейронов

Рис.8.9. Активность различных групп дыхательный нейронов продолговатого мозга в связи с фазами дыхательного цикла.I — вдох,II — выдох.

Нейроны:

1 — полные;2 — ранние;3 — поздние инспираторные;4,5,6 — аналогичные экспираторные;7 — инспираторно-экспираторные;8 —экспираторно-инспираторные;

9,10 — нейроны, обладающие непрерывной активностью с усилением в различные фазы цикла.

Нейроны каждой разновидности не разбросаны по отдельности и нередко находятся друг от друга на расстояние не более 100 мкм. Полагают, что различные виды дыхательных нейронов образуют сво­еобразные микрокомплексы, которые служат теми очагами, где форми­руется автоматизм дыхательного центра.

Типичным ритмообразующим комплексом является система из четырех нейронов («ранних» и «позд­них» инспираторных и экспираторных), объединенных возвратными связями и  способных в  совокупности генерировать  залповую  активность. Каждый цикл начи­нается с активности «ран­него» инспираторного ней­рона.

Затем возбуждение переходит последовательно на «поздний» инспираторный нейрон, «ранний» и «позд­ний» экспираторные нейроны и снова на «ранний» инспираторный. Благодаря на­личию возвратных связей, нейрон каждой ритмообразующей группы, возбужда­ясь, оказывает тормозное воздействие на два предше­ствующих ему в цикле ней­рона.

Так называемые «пол­ные» инспираторные и экспираторные нейроны обес­печивают передачу возбуж­дения по нисходящим путям спинного мозга к мотоней­ронам, иннервирующим ды­хательные  мышцы.

После перерезки у экс­периментальных животных ствола мозга ниже варолиева моста дыхательные дви­жения сохраняются.

Одна­ко, изолированный от нис­ходящих влияний дыхатель­ный центр способен обес­печить лишь примитивное дыхание, при котором дли­тельный выдох периодичес­ки прерывается короткими вдохами.

Для стабильности и координации дыхательно­го ритма, обуславливающей дыхание с плавным харак­тером перехода от вдоха к выдоху, необходимо, в пер­вую очередь, участие нерв­ных образований варолиева моста.

В передней части варо­лиева моста обнаружена область, названная пневмотаксическим центром, разрушение которой приводит к удлинению фаз вдоха и выдоха, а электрическая стимуляция различных ее зон — к досрочному пере­ключению фаз дыхания.

При перерезке ствола мозга на границе между верхней и средней третью варолиева моста и одновременном пересечении обоих блуждающих нервов дыхание останавливается на фазе вдоха, лишь иногда прерываемой экспираторными движениями (так называемый апнейзис).

На основании этого был сделан вывод, что дыхательный ритм возникает в результате периодического тор­можения тонической активности нейронов продолговатого мозга афферентной импульсацией, приходящей по блуждающему нерву и действующей через экспираторные нейроны, а после перерезки блуждающего нерва — вследствие ритмического торможения, посту­пающего  из пневмотаксического центра варолиева  моста.

В ростральных отделах варолиева моста, в медиальном парабрахиальном ядре, в участках мозговой ткани вентральнее его, а также в структурах, относящихся к управлению дополнительными дыха­тельными мышцами, т.е. в том месте, которое идентифицируют как пневмотаксический центр, найдено наибольшее количество дыха­тельных нейронов моста.

В отличие от нейронов продолговатого мозга, стабильно сохраняющих характер залповой активности, в варолиевом мосту один и тот же дыхательный нейрон может изме­нить характер своей деятельности.

Дыхательные нейроны варолиева моста организованы в группы, состоящие из 10-12 нейронов раз­ного вида.

Среди них много так называемых переходных (фазово-охватывающих) нейронов, проявляющих с максимумом частоты при смене фаз дыхательного цикла.

Этим нейронам приписывают функ­цию связывания различных фаз дыхательного цикла, подготовки ус­ловий для прекращения фазы вдоха и перехода к выдоху.

Пневмо­таксический центр варолиева моста связан с дыхательным центром продолговатого мозга восходящими и нисходящими проводящими путями. К медиальному парабронхиальному ядру и ядру Келликера-Фузе из продолговатого мозга поступают аксоны нейронов одиноч­ного пучка и ретроамбигуального ядра. Эти аксоны являются основным входом в пневмотаксического центра.

Отличительной чертой активности дыхательных нейронов варолиева моста является то, что при нарушении связи с продолговатым мозгом они теряют залповый характер импульсации и модуляцию частоты импульсов в ритме дыхания.

Считается, что пневмотаксический центр получает импульсы от инспираторной части дыхательного центра продолговатого мозга и посылает импульсы обратно к дыхательному центру в продолговатый мозг, где они возбуждают экспираторные и тормозят инспираторные нейроны. Дыхательные нейроны варолиева моста первыми получают сведения о необходимости приспособления дыхания к изменяющим­ся условиям и соответствующим образом меняют активность нейро­нов дыхательного центра, а переходные нейроны обеспечивают плав­ную смену вдоха на выдох.

Таким образом, благодаря совместной работе с пневмотаксическим комплексом, дыхательный центр продолговатого  мозга может осуществлять ритмическую смену фаз дыхательного цикла с оптимальным соотношением длительности вдоха, выдоха и дыхательной паузы. Однако, для нормальной жизнеде­ятельности и поддержания адекватного потребностям организма дыхания необходимо участие не только варолиева моста, но и выше­лежащих отделов головного мозга.

Источник: https://doctor-v.ru/med/regulation-breathing-respiratory-center/

Регуляция дыхания

Регуляция дыхания

В продолговатом мозге расположен дыхательный центр. Он представляет собой совокупность групп нейронов, аксоны которых идут к мотонейронам спинного мозга, иннервирующим межреберные мышцы и мышцы диафрагмы.

При периодическом возбуждении так называемых инспираторных нейронов (отвечающих за вдох) возбуждение достигает дыхательных мышц, они сокращаются, и происходит вдох. При вдохе легкие растягиваются, и возбуждаются механические рецепторы, расположенные в их стенках.

От них импульсы поступают в продолговатый мозг, и активность инспираторных нейронов резко тормозится. Происходит выдох. Стенки легких расслабляются, возбуждение механических рецепторов прекращается, возобновляется возбуждение инспираторных нейронов, и начинается следующий дыхательный цикл.

Для того чтобы произошел глубокий выдох, необходимо возбуждение экспираторных нейронов дыхательного центра, которые вызывают сокращение мышц, приводящих к уменьшению объема грудной клетки.

Дыхательный центр обладает автоматией и возбуждается периодически, в среднем 15 раз в минуту.

При физических и эмоциональных нагрузках частота дыхания резко возрастает, чтобы обеспечить возросшие потребности организма в кислороде и, соответственно, удаление увеличенных количеств СO2 Во многих зонах сосудистого русла расположены рецепторы, возбуждающиеся при повышении содержания СO2 в крови.

От этих рецепторов импульсы следуют в инспираторную часть дыхательного центра, стимулируя вдох. Кроме того, сами нейроны дыхательного центра очень чувствительны к увеличению концентрации углекислого газа в крови и реагируют на него учащением дыхания.

Человек способен произвольно задерживать или учащать дыхание, менять его глубину. Это возможно потому, что деятельность дыхательного центра продолговатого мозга находится под контролем высших отделов мозга, в частности коры больших полушарий.

На активность дыхательного центра влияет также целый ряд гормонов, а также состояние других систем организма.

При вдыхании паров веществ, раздражающих рецепторы слизистой оболочки дыхательных путей (хлор, аммиак), происходят мгновенный рефлекторный спазм ой щели, бронхов и задержка дыхания.

К защитным рефлексам следует отнести также короткие резкие выдохи — чихание, возникающее при раздражении рецепторов носа и носоглотки, и кашель, возникающий при раздражении рецепторов гортани, трахеи, бронхов. При чихании и кашле из дыхательных путей удаляются инородные частицы, слизь и т. п.

Дыхание регулируется: 1) нервно-гуморально благодаря возбуждению нейронов дыхательного центра продолговатого мозга колебаниями химического состава притекающей к ним крови; 2) рефлекторно благодаря притоку афферентных импульсов в дыхательный центр продолговатого мозга.

Дыхательный центр вызывает сокращения дыхательной мускулатуры и после перерезки блуждающих нервов, т. е. после выключения рефлекторной саморегуляции дыхания.

Это происходит благодаря тому, что дыхательный центр одновременно возбуждается не только рефлекторно, но и изменением химического состава притекающей к нему крови.

Можно отрезать все афферентные нервы, а деятельность дыхательного центра не прекратится.

Это объясняется тем, что важнейший возбудитель дыхательного центра — внутренний, автоматический, главным образом углекислота, накапливающаяся в крови, а также повышение концентрации водородных ионов при накоплении других кислот.

Дыхательный центр у детей легко возбудим. Дыхание у них Значительно учащается при психических возбуждениях, небольших физических упражнениях, незначительном, повышении температуры тела и окружающей среды.

Рефлексы саморегуляции дыхания

В легких, плевре, грудных и брюшных мышцах имеются окончания афферентных нервных волокон (рецепторы), которые возбуждаются во время вдоха и усиленного выдоха.

Возбуждение, возникающее в этих рецепторах, направляется в дыхательный центр продолговатого мозга по афферентным нервным волокнам, проходящим в составе блуждающих и симпатических нервов (из легких и плевры) и по афферентным волокнам двигательных нервов (из скелетных мышц).

В легких имеются механически раздражаемые рецепторы (мехаиорецепторы), которые делятся на: медленно адаптирующиеся, т. е.

приспособляющиеся к раздражению, рецепторы растяжения, расположенные в глубине легких, в стенках крупных бронхом и в трахее; быстро адаптирующиеся рецепторы растяжения н спадения легких, находящиеся в глубине легких и в слизистой Оболочке бронхов, и рецепторы промежуточной ткани легочных альвеол.

Медленно адаптирующиеся рецепторы составляют примерно 2/3, они возбуждаются при вдохе. Частота импульсов возбуждения раина 40-100 в 1 секунду и зависит от объема вдыхаемого воздуха и в малой степени от его состава. При увеличении объема легких мне частота импульсов возрастает. Афферентные импульсы передаются по толстым волокнам блуждающих нервов.

Быстро адаптирующиеся рецепторы составляют около 1/3, на раздувание легких они реагируют короткой, быстро исчезающей группой импульсов, передаваемых по тонким волокнам блуждающих нервов.

Рецепторов спадения легких очень мало и они возбуждаются при нормальном выдохе только при сильном их спадении. Быстро адаптирующиеся рецепторы растяжения, спадения и слизистой бронхов идентичны.

Они названы ирритантными.

Рецепторы трахеи и крупных бронхов отвечают на слабые механические раздражения. Благодаря поступлению афферентных импульсов из легких, плевры и из рецепторов мышц в дыхательный центр из последнего направляются эфферентные импульсы в спиной мозг к ядрам двигательных нервов дыхательных мышц, которые вызывают их сокращение.

Во время вдоха, когда легкие в достаточной степени растягиваются, возникает механическое раздражение рецепторов в легких и плевре, которое рефлекторно прекращает сокращение дыхательных мышц, участвующих в акте вдоха.

Рефлекторное торможение вдыхательных мышц при увеличении объема легких, уменьшение частоты и силы их сокращений вызывается усилением раздражения медленно адаптирующихся рецепторов.

Интенсивность торможения пропорциональна увеличению растяжения легких до полной остановки вдоха. При этом рефлекторно снижается также тонус гладких мышц трахеи и бронхов.

При усилении раздувания легких появляется кратковременное, в пределах секунды, возбуждение вдыхательных мышц.

Наоборот, при выдохе, когда легкие достигли изв’естной степени расслабления, раздражение рецепторов в легких и плевре вызывает рефлекторно сокращение вдыхательных мышц. Это сокращение вдыхательных мышц при спадении легких вызывается раздражением быстро адаптирующихся рецепторов. Рецепторы диафрагмы в обычных условиях почти не участвуют в регуляции дыхания.

При расширении грудной клетки во время вдоха раздражаются рецепторы кожи, покрывающей грудную клетку, межреберных мышц и мышц брюшной стенки, в которых особенно много рецепторов, что рефлекторно усиливает сокращение вдыхательных мышц. Однако сильное раздражение этих рецепторов при значительном расширении грудной клетки тормозит сокращения вдыхательных мышц.

Следовательно, вдох рефлекторно регулирует выдох, а выдох регулирует вдох (теория Геринга — Брейера).

Рефлекторная саморегуляция дыхания имеет защитное значение, так как она препятствует чрезмерному растяжению легких при вдохе. Афферентные импульсы из легких и плевры, поступающие по блуждающим нервам во время вдоха, вызывают торможение вдыхательного центра. Такое же торможение вдыхательного центра вызывают афферентные импульсы из идыхательных мышц.

При перерезке обоих блуждающих нервов дыхание сохраняется, но оно становится более глубоким и редким. Углубление дыхания после перерезки блуждающих нервов происходит благодаря тому, что прерываются афферентные волокна, вызывающие торможение дыхательного центра.

Раздражение центрального конца перерезанного блуждающего нерва во время вдоха вызывает угнетение вдыхательных движений и задержку дыхания на выдохе.

Ещё более резкое торможение вдоха вызывает раздражение астрального конца верхнего гортанного нерва. При раздражении этого нерва после остановки дыхания получается глубокий выдох, с которым следует усиленное сокращение выдыхательных мышц.

Шейный симпатический нерв наоборот, повышает возбудимость дыхательного центра. Раздражение головного конца этого нерва вызывает учащение и усиление дыхательных движений.

Воздух, проходящий через гортань и трахею, раздражает окончания языкоглоточного и гортанного нервов. По этим нервам, преимущественно по верхнему гортанному нерву, импульсы, регулирующие дыхание, передаются в дыхательный центр, что вызывает изменение частоты и глубины дыхания.

Возбудимость дыхательного центра по отношению к рефлекторным и нервно-гуморальным влияниям поддерживается также афферентными импульсами из рецепторов, расположенных вне дыхательного аппарата.

Дыхание рефлекторно изменяется при раздражениях рецепторов кожи (прикосновении, тепло, холод), органов зрения, слуха, обоняния и вкуса. Дыхание изменяется при притоке афферентных импульсов из рецепторов скелетных мышц и сухожилий туловища, рук и ног.

Особо важное защитное значение имеют раздражения слизистой оболочек дыхательных путей. Раздражение пылью или слизью окончаний гортанного нерва в дыхательных путях вызывает судорожные выдыхательные движения при закрытой ой щели (кашель).

Когда раздражающие вещества, например пары аммиака, действуют на окончания тройничного нерва в носоглотке, происходит рефлекторная задержка дыхания, при этом может наступить сужение бронхов, которое тоже имеет защитное значение.

Раздражение носоглотки пылью или слизью вызывает чихание — глубокий вдох, а затем очень сильный и быстрый выдох при закрытом рте.

На дыхательный центр влияют также раздражения нервных окончаний в дуге аорты и каротидном синусе.

Увеличение кровяного давления в них рефлекторио задерживает дыхание, а уменьшение кровяного давления, наоборот, усиливает дыхание.

Рефлекторное возбуждение дыхательного центра вызывается также раздражением хеморецепторов дуги аорты и каротидного синуса углекислотой при повышенном содержании ее в крови и раздражениями рецепторов внутренних органов.

Гладкая мускулатура бронхов снабжена эфферентными нервными волокнами блуждающих и симпатических нервов. Блуждающие нервы вызывают сокращение бронхиальной мускулатуры и, следовательно, сужение бронхов. Симпатические нервы вызывают расслабление бронхиальной мускулатуры и, следовательно, расширение бронхов.

Пассивное расширение бронхов происходит при вдохе, а пассивное сужение — при выдохе.

Волнообразные сокращения мускулатуры бронхов имеют защитное значение, так как они при помощи волосков мерцательного эпителия отодвигают посторонние частицы, попавшие в бронхи (пыль), к началу дыхательных путей, где они выбрасываются кашлевыми движениями. 

Особенности регуляции легочного дыхания у водных животных

У животных имеются морфологические приспособления: резко увеличенная грудная клетка, особо мощная дыхательная мускулатура, большая подвижность грудной клетки, открывающиеся вверх носовые отверстия (киты, дельфины). У дельфинов в 3 раза больше альвеол, чем у человека.

У китообразных в мелких бронхах есть мышечные жомы, длительно удерживающие воздух. Физиологические приспособления у водных животных следующие. Во-первых,  повышенная способность крови связывать кислород за счет увеличения содержания гемоглобина в эритроцитах и увеличенной способности гемоглобина связывать кислород — например, у дельфинов в 1,5 раза.

У них во много раз больше миоглобина, который в отличие от гемоглобина депонирует кислород и отдает его при необходимости: например, у тюленя содержание миоглобина и мышцах 20-40% от сухого остатка мышечной ткани.

Во-вторых, при нырянии не только останавливается дыхание, но и резко уменьшается частота сердцебиений и происходит сужение кровеносных сосудов всего тела за исключением снабжающих кровью нервную систему, например у тюленя.

У всех ластоногих имеется специальный сфинктер из поперечнополосатой мышечной ткани, расположенный вокруг полой вены над диафрагмой. При нырянии он сдавливает полую вену и прекращает кровообращение во всем теле, кроме головы.

Это обуславливает высокую устойчивость к большому содержанию углекислоты в крови и сохраняет на прежнем уровне ее снабжение кислородом. У ныряющих птиц также резко замедляются сердцебиение, они ритмически двигают под водой конечностями и крыльями, что вызывает перемешивание воздуха в воздушных мешках.

В результате киты могут находиться под водой до 105, дельфины до 15, а утки до 23 мин.

Источник: https://www.polnaja-jenciklopedija.ru/biologiya/regulyatsiya-dyhaniya.html

Биология в лицее

Регуляция дыхания

Дыхательный центр — это совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды. Эти нейроны находятся в спинном мозге, продолговатом мозге, варолиевом мосту и коре большого мозга.

Основными являются нейроны, расположенные в продолговатом мозге. Именно они задают ритм и глубину дыхания и посылают импульсы к двигательным нейронам спинного мозга, которые контролируют сокращение дыхательных мышц. Дыхательный центр является двусторонним и состоит из двух функциональных отделов: центра вдоха и центра выдоха.

Нейроны моста и коры полушарий большого мозга контролируют деятельность нейронов вдоха и выдоха. Функции дыхательного центра исследовал в 1885 году Н. А. Миславский. При перерезке мозга между продолговатым и спинным мозгом наблюдается полное прекращение дыхания, между мостом и продолговатым мозгом дыхание сохраняется.

Повреждение нейронов вдоха и выдоха продолговатого мозга прекращает дыхание.

Дыхательный центр очень чувствителен к избытку углекислого газа, который является его главным естественным возбудителем. При этом избыток СО2 действует на дыхательные нейроны как непосредственно (через кровь и спинномозговую жидкость), так и рефлекторно (через хеморецепторы сосудов и продолговатого мозга).

Дыхательный центр находится постоянно в состоянии активности, потому что в нём автоматически возникают импульсы возбуждения.

Рефлекторная (нервная) регуляция дыхания

Примерно через каждые 4 секунды из дыхательного центра продолговатого мозга к мышцам вдоха идут нервные импульсы, заставляющие поднимать грудную клетку и опускать диафрагму. Благодаря этому происходит вдох.

Выдох же в состоянии покоя самопроизволен: грудная клетка опускается под действием силы тяжести. Лишь при глубоком дыхании включается центр выдоха, который заставляет работать мышцы, осуществляющие глубокий выдох.

На работу дыхательных центров оказывают влияние и высшие дыхательные центры, расположенные в коре больших полушарий. Благодаря их влиянию дыхание изменяется при разговоре и пении; возможно также сознательно изменять ритм дыхания во время физических упражнений.

В регуляции дыхания участвуют и такие защитные рефлексы, как чихание и кашель. Раздражение рецепторов слизистой носа пылью, неприятно пахнущим веществом вызывает поток нервных импульсов в продолговатый мозг, а оттуда к мышцам.

Это приводит к остановке дыхания и смыканию ой щели. Затем начинается интенсивный (форсированный) выдох. Давление воздуха нарастает, и наступает момент, когда он с силой прорывается через сомкнутые ые связки.

Струя воздуха направляется в нос, человек чихает, воздух прорывается наружу, а вместе с ним удаляется слизь, мешающая дыханию.

То же самое происходит и при кашле, только поток воздуха при выдохе выходит через ротовое отверстие. Причиной кашля может стать раздражение бронхов, трахеи, гортани или легочной оболочки – плевры.

Интенсивность дыхания меняется не только при физической нагрузке, но и в зависимости от эмоционального состояния человека. При волнении дыхание становится прерывистым, человеку трудно говорить, при гневе оно шумное и частое.

Приятные эмоции могут сопровождаться снижением интенсивности дыхания (“Он слушал затаив дыхание”).

При смехе происходит прерывистое открывание ой щели на выдохе, при плаче к судорожным движениям ых связок на выдохе присоединяются аналогичные движения на вдохе (всхлипывания).

При входе в холодную воду дыхание останавливается на вдохе. Биологический смысл этого рефлекса в том, что при этом сокращается испарение воды с поверхности легких, а следовательно, и потеря тепла, связанная с парообразованием. Дыхание прекращается лишь на несколько секунд, но за это время организм успевает приспособиться к новым температурным условиям.

Гуморальная регуляция дыхания

При мышечной работе усиливаются процессы окисления, а следовательно, выделяется больше углекислого газа.

Кровь с избытком углекислого газа доходит до дыхательного центра и его раздражает, возбудимость повышается: человек начинает дышать глубже. Избыток углекислого газа удаляется, а недостаток кислорода восполняется, т.е.

происходит гуморальная регуляция: углекислый газ непосредственно влияет на дыхательный центр через кровь.

Углекислый газ действует на дыхательный центр и рефлекторно, раздражая рецепторы стенок артерий, по которым кровь направляется в мозг.

Если концентрация углекислого газа в крови понижается, работа дыхательного центра также снижается, и наступает задержка дыхания на небольшой срок. Когда содержание CO2 в крови восстановится до нормы, самопроизвольно восстановится и дыхание.

Благодаря регуляции дыхания концентрация углекислого газа и кислорода в крови поддерживается на определенном уровне в любых условиях.

Особенно важно постоянство соотношения этих газов для головного мозга: слишком большое содержание кислорода в крови вызывает спазмы сосудов мозга, что приводит его к кислородному голоданию.

Этим, кстати, объясняется то, что горожане, выехавшие в лес, на природу, в первое время могут испытывать головокружение, головную боль и другие неприятные состояния.

По мере привыкания к новой обстановке эти неприятные ощущения проходят.

Периодичность непроизвольного дыхания определяется дыхательным центром. Произвольная регуляция дыхания в момент речи, пения, дыхательных упражнений осуществляется корой больших полушарий головного мозга.

Гуморальная регуляция дыхания происходит под воздействием углекислого газа на дыхательный центр: чем активнее работа, тем больше тканями выделяется углекислого газа и тем интенсивнее легочное дыхание.

Источник: http://biolicey2vrn.ru/index/reguljacija_dykhanija/0-371

Регуляция дыхания центральной нервной системой

Регуляция дыхания находится под контролем центральной нервной системы. Приспособление этого процесса к нуждам организма происходит с помощью механизма обратной связи от дыхательных стимулов.

Дыхательные движения грудной клетки и диафрагмы согласуются путем ритмических возбуждений нейронов продолговатого мозга

Нейроны, ответственные за акт вдоха (инспираторные нейроны), посылают нервные импульсы к инспираторным мышцам (например, к наружным межреберным мышцам, к диафрагме) по спинному мозгу, увеличивая объем грудной клетки и расширяя легкие.

Движение возбуждает специальные сенсорные клетки (рецепторы растяжения) в легких.

Эти клетки посылают нервные импульсы в дыхательные центры, подавляя работу инспираторных нервных клеток и одновременно возбуждая клетки, ответственные за акт выдоха (экспираторные нейроны).

Химическая регуляция дыхания

Важнейшую роль в регуляции дыхания играют изменения в газовом составе (парциальные давления СО2 и О2) и pH (концентрация ионов водорода в крови) артериальной крови. Поэтому химическая регуляция дыхания способствует поддержанию гомеостаза, позволяя дыханию адаптироваться к метаболической активности организма.

Химические дыхательные стимулы возникают в хеморецепторахаорты, двух сонных артерий и в ЦНС около дыхательного центра. При этом, обеспечивается обратная связь (саморегуляция) от нервов к дыхательному центру.

Периферические хеморецепторы в основном определяют уменьшение артериального РаО2, а хеморецепторы ЦНС реагируют на повышение РаСО2 и на связанное с ним падение уровня pH в крови и спинномозговой жидкости.

Когда падает артериальное РаО2, или повышается концентрация СО2, а также когда уровень артериального pH становится ниже 7,5, дыхание усиливается (увеличивается минутный объем), нормализуя соотношение кислорода и углекислого газа.

Из трех дыхательных стимулов – углекислый газ, концентрация протонов кислород, наибольшее значение имеет углекислый газ.

Исходя из этого потребность в увеличении минутного объема появляется не столько из-за понижения концентрации О2 в крови, сколько из-за повышения концентрации СО2. Например, если РаСО2 повышается от 46 мм рт. ст. до 70 мм рт. ст.

, вентиляция увеличивается в 8-10 раз (соответствует минутному объему 75 л/мин.). Однако если РаС02 продолжает увеличиваться, дыхательный центр парализуется (остановка дыхания).

Если человек дышит быстро и глубоко (гипервентиляция), дыхание также может остановиться, так как кровь обедняется углекислым газом до уровня, при котором теряется побуждение к дыханию. Гипервентиляция может быть особенно опасна для жизни ныряльщиков, которые ныряют без баллонов.

Для того чтобы оставаться под водой как можно дольше, они перед этим значительное время учащенно дышат. Затем под водой они используют запасы своего кислорода без его выделения, потому что содержание СО2 в крови еще не повысилось до уровня, который активирует дыхательный центр.

Следовательно, эти ныряльщики могут внезапно потерять сознание от недостатка кислорода, потому что не появился раздражитель, который бы заставлял вдохнуть, т. е. подняться к поверхности.

Хотя недостаток О2 обычно не играет роли в приведении в действие дыхательного центра, это становится жизненно важным, когда дыхательный центр больше не отвечает на стимуляцию СО2 из-за слишком высокого парциального давления СО2 (дыхательная недостаточность). В это время дыхательный центр возбуждается только при относительном недостатке О2.

Поэтому снабжение кислородом нужно тщательно контролировать, чтобы не допустить остановки дыхания при гипоксии. Парадоксальным образом, при дыхательной недостаточности во время гиперкапнии (РаО2>50 мм рт. ст.) подача даже незначительного количества кислорода может привести к остановке дыхания и смерти.

Неспецифические дыхательные стимулы

В то время как химические дыхательные стимулы могут регулировать дыхание по принципу обратной связи, неспецифические дыхательные стимулы влияют на дыхательную функцию без обратной связи.

Дыхание может быть интенсифицировано болевыми или температурными стимулами, психологическим волнением (например, тревогой), стимулами артериального давления от соответствующих рецепторов (например, после падения кровяного давления), мышечной работой и гормонами (например, при повышении уровня прогестерона крови во время беременности).

Источник: https://www.sportmassag.ru/1/page6214.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.