Резистентность микроорганизмов

Содержание

Резистентность бактерий: опасность, которая рядом

Резистентность микроорганизмов

Насколько вопрос, о котором пойдет ниже речь, имеет важнейшее значение, можно судить по тому факту, что к нему четыре года назад привлек внимание научного сообщества первооткрыватель структуры ДНК нобелевский лауреат Джеймс Уотсон.

В 2011 году он и еще 30 ученых-биологов из Канады, Франции, Финляндии, Бельгии, Германии, Великобритании и США собрались в Нью-Йорке на конференцию, посвященную проблеме устойчивости бактерий к антибиотикам.

По ее итогам участники опубликовали совместное заявление, в котором с нескрываемой тревогой говорилось: «Развитие и распространение устойчивости к антибиотикам у бактерий представляет всеобщую угрозу для человека и животных, которую, как правило, сложно предотвратить, но, тем не менее, можно держать под контролем, и эту задачу нужно решать наиболее эффективными способами. До широкой общественности должны быть доведены факты, касающиеся важнейшей роли бактерий в жизни и благополучии людей, природе антибиотиков и важности их разумного использования».

Следующее громкое заявление прозвучало в 2012 году. Генеральный директор ВОЗ Маргарет Чен выступила в Копенгагене на конференции «Борьба с устойчивостью к противомикробным препаратам — время действовать». Отбросив всякую дипломатичность, М.

Чен прямо и откровенно заявила, что наступает новый, непредсказуемый этап развития и нас может ожидать «конец современной медицины в том виде как мы ее знаем». Гендиректор ВОЗ предрекла наступление постантибиотической эпохи, когда «даже стрептококковое воспаление горла или царапина на коленке ребенка могут снова приводить к смерти».Рис.

М. СмагинаКонечно, для того чтобы услышать из уст руководителя ВОЗ о скором конце современной медицины, должны были сложиться исключительные обстоятельства. К сожалению, об этих обстоятельствах большинство людей не имеет ни малейшего представления.

Ныне процесс возникновения и распространения устойчивых клинических штаммов бактерий происходит слишком стремительно, буквально на глазах врачей и исследователей.

За последние 10−15 лет в результате продолжающегося интенсивного применения антибактериальных средств (АБ) бактериальные «монстры», устойчивые к различным антибиотикам, практически полностью вытеснили штаммы, устойчивые только к одному виду АБ. Отмечено появление так называемых панрезистентных супербактерий, устойчивых абсолютно ко всем используемым ныне АБ.

Такая ситуация не только усложняет борьбу с типичными инфекционными заболеваниями, но и ставит под угрозу применение многих жизненно важных медицинских процедур вроде трансплантации органов, имплантации протезов, передовой хирургии и химиотерапии раковых заболеваний. При всех этих процедурах повышается риск развития инфекционных заболеваний.

Каквозникает ираспространяется устойчивость кантибиотикам?

Почему же сложилась такая ситуация, что когда-то всемогущие АБ вдруг перестали эффективно действовать на бактерии? Чтобы ответить на этот вопрос, необходимо разобраться с основными способами возникновения устойчивости и путями ее распространения.

Устойчивость бактерий к АБ может быть врожденной и приобретенной. Врожденная устойчивость обусловлена особенностями строения структур клетки, на которые направлено действие антибиотика. Такая устойчивость может быть связана, например, с отсутствием у микроорганизмов мишени действия АБ или недоступностью мишени вследствие низкой проницаемости оболочки клетки.

Приобретенная устойчивость возникает в результате контакта микроорганизма с антимикробным средством за счет возникновения мутаций либо благодаря горизонтальному переносу генов (ГПГ) устойчивости.

В настоящее время именно горизонтальный перенос различных генов резистентности является главной причиной быстрого возникновения множественной лекарственной устойчивости у бактерий.

ГПГ — процесс, в котором организм передает генетический материал другому организму, не являющемуся его потомком. Такая переданная ДНК встраивается в геном и затем стабильно наследуется.

Центральную роль в этом процессе играют различные мобильные генетические элементы — плазмиды, транс-позоны, IS-элементы, интегроны.

За последние годы сформировано четкое понимание того, что ГПГ является одним из ведущих механизмов эволюции бактерий.

Эволюционные корнипроблемы устойчивости

Гипотеза о том, что актиномицеты-продуценты антибиотиков, живущие в почвах, становятся источником генов устойчивости к антибиотикам, была сформулирована еще в 1973 году американскими учеными Бенвенистом и Дэвисом (Benveniste, Davies).

Однако впоследствии выяснилось, что гены продуцентов АБ имеют очень низкое сходство с генами патогенных бактерий. Поэтому было сделано предположение о том, что любые природные бактерии, а не только сами продуценты, являются источником генов устойчивости к АБ.

Первые свидетельства в пользу этого предположения были получены французскими учеными при изучении происхождения генов бета-лактамазы и генов устойчивости к хинолонам. В обоих случаях удалось обнаружить природные бактерии, несущие гены, почти идентичные клиническим.

Однако это были лишь единичные примеры; к тому же нельзя было исключить возможность переноса генов в обратном направлении, от клинических штаммов бактерий к бактериям природным.

Для убедительного подтверждения данной гипотезы было необходимо выделить гены, идентичные или практически идентичные клиническим из природных экосистем, не подвергавшихся антропогенному воздействию.

Впервые такие гены устойчивости к АБ из абсолютно нетронутых экосистем удалось обнаружить в 2008 году российским генетикам из Института молекулярной генетики РАН. Для этих исследований были использованы образцы «вечной» мерзлоты возрастом от 20 тыс. до 3 млн лет.

В 2011 году канадские исследователи также обнаружили гены устойчивости в ДНК, выделенной из образца мерзлоты с Клондайка возрастом 30 тыс. лет. В настоящее время в лабораториях ряда стран активно ведутся геномные исследования в этом направлении.

Благодаря всем этим исследованиям уже никто не сомневается в том, что резистентность к АБ имеет глубокие эволюционные корни и существовала задолго до начала применения АБ во врачебной практике.

Хозяйственная деятельность иустойчивостькАБ

Хотя гены устойчивости к АБ у бактерий возникли еще в древности, широкое распространение таких генов среди микроорганизмов началось после начала использования антибактериальных средств в медицине.

Активное и повсеместное применение антибактериальных средств послужило мощнейшим эволюционным инструментом, способствуя селекции и распространению бактерий с измененным геномом. Более 100 тыс.

тонн АБ, производимых ежегодно, заставляют микроорганизмы проявлять чудеса приспособляемости.

По сути, начав активно использовать антибиотики, человек неожиданно для себя поставил широкомасштабный и планомерный эксперимент по отбору устойчивых бактерий. Следует особо подчеркнуть, что в результате этого в клинике произошел отбор не только генов устойчивости, но и особых систем, значительно ускоряющих приобретение новых генов устойчивости за счет ГПГ.

Это привело к тому, что АБ, которые еще недавно успешно использовались для борьбы с самыми различными возбудителями инфекций, теперь в подавляющем большинстве случаев оказываются неэффективными.

Ведь в процессе эволюции у бактерий выработаны многочисленные приспособительные механизмы, позволяющие быстро меняться и выживать в условиях самого жесткого отбора, будь он естественным или искусственным.

Нынешняя опасная ситуация, сложившаяся в борьбе с инфекциями, напрямую связана с огромным количеством производимых АБ.

Большинство из них плохо усваивается человеком и животными, в результате чего от 25% до 75% потребляемых антибактериальных средств без изменений выводится из организма с калом и мочой, попадая затем вместе с водой в естественные водоемы.

По всему миру ученые регулярно находят в городских сточных водах высокую концентрацию АБ после их использования в медицине и животноводстве. И никакие очистные сооружения не в силах этому противостоять.

Такая ситуация прямо способствует распространению резистентности к АБ: бактерии, живущие в естественной среде, после контакта с малыми дозами АБ из очистных сооружений приобретают к ним устойчивость.

Под-тверждением этому служит тот факт, что в местах слива сточных вод постоянно обнаруживаются бактерии с генами устойчивости к АБ, а также бактериофаги, передающие эти гены бактериям. Кроме того, использование для удобрения полей навоза животных, получавших антибиотики, также приводит к заметному увеличению в почве бактерий, содержащих гены устойчивости. Эти гены потом могут передаваться бактериям, живущим на растениях, а затем с растительной пищей попадать в кишечник человека и захватываться кишечной микрофлорой.

В немалой степени способствует распространению устойчивости к АБ заведенная в животноводстве практика создания крупных комплексов с многотысячными поголовьями. Плазмиды с генами устойчивости, R-плазмиды, очень быстро распространяются на ограниченном пространстве с большим количеством животных.

И здесь уже можно увидеть социальные причины увеличения резистентности к АБ. Постепенная миграция сельских жителей в города приводит к исчезновению небольших животноводческих хозяйств и замене их гигантскими комплексами, которые являются прекрасным резервуаром для накопления факторов резистентности.

В таких комплексах гены устойчивости к АБ приобретают не только животные, но и люди из обслуживающего персонала.

Еще одним важным фактором распространения устойчивости к АБ оказывается принятое сегодня за правило применение субтерапевтических доз АБ в животноводстве в качестве факторов роста. Директор ВОЗ М.

Чен привела поразительные данные о том, что более половины всех производимых сегодня антибиотиков скармливают животным для их быстрого роста: «Количество антибиотиков, используемых среди здоровых животных, превышает количество антибиотиков, используемых среди нездоровых людей».

Еще одной ключевой причиной распространения устойчивости к АБ стало необоснованное назначение их врачами (наряду с самолечением).

Вообще, как это ни парадоксально, любые контакты со сферой здравоохранения несут в себе повышенный риск заразиться бактериями, устойчивыми к целому спектру АБ.

Нужна по-настоящему стерильная чистота, аккуратность и ответственность, чтобы противостоять распространению устойчивых штаммов в таких медицинских учреждениях.

Выходесть!

Но даже из такой сложной ситуации есть выход. И здесь будет уместно привести два примера. Дания в конце 1990-х первой в Европе ввела запрет на использование антибиотиков в качестве стимуляторов роста животных. Результаты такого шага не заставили себя ждать.

Международная группа экспертов показала, что отказ Дании от АБ в животноводстве не только не нанес большого ущерба доходам фермеров, но и способствовал значительному снижению факторов устойчивости к АБ на фермах и в мясе животных. В выигрыше оказались все, кроме производителей АБ.

Германия, запретив использование АБ авопарцина на птицефермах, тоже добилась внушительных результатов: количество энтерококков, устойчивых к ванкомицину (аналогу авопарцина), за четыре года после запрета снизилось в три раза.

Налицо непростая ситуация. Человечество стоит перед очень сложной многогранной проблемой. Научные исследования показали, насколько сложно устроены биологические процессы у живых организмов и как осторожно нужно вмешиваться в их естественный ход.

Появление в последние десятилетия устойчивых к лекарствам супербактерий и множества новых инфекций — лучшее тому подтверждение. Бездумное применение антибиотиков создало реальную угрозу для человечества.

И для того, чтобы устранить или хотя бы уменьшить эту угрозу, потребуются большие усилия, и в первую очередь правительств и научно-медицинского сообщества.

Майя Петрова, Алексей Ржешевский

1. Выступлениегендиректора ВОЗМ. Чен who.int/dg/speeches/2012/amr_20 120 314/ru/

2. ПетроваМ.А. исоавт.

Изучение ассоциациигеновstrAstrBс плазмидамиитранспозонамиу современныхидревнихбактерий. Генетика. 2008, 44(9): 112-116.

3. Allen H.K., Donato J., Wang H.H., Cloud-Hansen K.A., Davies J., Handelsman J. Call of the wild: antibiotic resistance genes in natural Nat Rev Microbiol. 2010, 8(4): 251259.

4. D'Costa V. M. et al. Antibiotic resistance is ancient. Nature. 2011, 477(7365):457-461.

5. Cantas L., Shah S.Q., Cavaco L.M., Manaia C.M., Walsh F., Popowska M., Garelick H., Bürgmann H., Sørum H.

A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota.

Front 2013, 4: Article 96.

6. Nikaido H. Multidrug resistance in Annu Rev Biochem. 2009, 78: 119146.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Связанные статьи

Источник: https://trv-science.ru/2015/05/19/rezistentnost-bakterij/

Как возникает и распространяется устойчивость к антибиотикам?

Почему же сложилась такая ситуация, что когда-то всемогущие АБ вдруг перестали эффективно действовать на бактерии? Чтобы ответить на этот вопрос, необходимо разобраться с основными способами возникновения устойчивости и путями ее распространения.

Устойчивость бактерий к АБ может быть врожденной и приобретенной. Врожденная устойчивость обусловлена особенностями строения структур клетки, на которые направлено действие антибиотика. Такая устойчивость может быть связана, например, с отсутствием у микроорганизмов мишени действия АБ или недоступностью мишени вследствие низкой проницаемости оболочки клетки.

Приобретенная устойчивость возникает в результате контакта микроорганизма с антимикробным средством за счет возникновения мутаций либо благодаря горизонтальномупереносугенов (ГПГ) устойчивости.

В настоящее время именно горизонтальный перенос различных генов резистентности является главной причиной быстрого возникновения множественной лекарственной устойчивости у бактерий.

ГПГ — процесс, в котором организм передает генетический материал другому организму, не являющемуся его потомком. Такая переданная ДНК встраивается в геном и затем стабильно наследуется.

Центральную роль в этом процессе играют различные мобильные генетические элементы — плазмиды, транспозоны, IS-элементы, интегроны.

За последние годы сформировано четкое понимание того, что ГПГ является одним из ведущих механизмов эволюции бактерий.

Эволюционные корни проблемы устойчивости

Гипотеза о том, что актиномицеты-продуценты антибиотиков, живущие в почвах, становятся источником генов устойчивости к антибиотикам, была сформулирована еще в 1973 году американскими учеными Бенвенистом и Дэвисом (Benveniste, Davies).

Однако впоследствии выяснилось, что гены продуцентов АБ имеют очень низкое сходство с генами патогенных бактерий. Поэтому было сделано предположение о том, что любые природные бактерии, а не только сами продуценты, являются источником генов устойчивости к АБ.

Первые свидетельства в пользу этого предположения были получены французскими учеными при изучении происхождения генов бета-лактамазы и генов устойчивости к хинолонам. В обоих случаях удалось обнаружить природные бактерии, несущие гены, почти идентичные клиническим.

Однако это были лишь единичные примеры; к тому же нельзя было исключить возможность переноса генов в обратном направлении, от клинических штаммов бактерий к бактериям природным.

Для убедительного подтверждения данной гипотезы было необходимо выделить гены, идентичные или практически идентичные клиническим из природных экосистем, не подвергавшихся антропогенному воздействию.

Впервые такие гены устойчивости к АБ из абсолютно нетронутых экосистем удалось обнаружить в 2008 году российским генетикам из Института молекулярной генетики РАН. Для этих исследований были использованы образцы «вечной» мерзлоты возрастом от 20 тыс. до 3 млн лет.

В 2011 году канадские исследователи также обнаружили гены устойчивости в ДНК, выделенной из образца мерзлоты с Клондайка возрастом 30 тыс. лет. В настоящее время в лабораториях ряда стран активно ведутся геномные исследования в этом направлении.

Благодаря всем этим исследованиям уже никто не сомневается в том, что резистентность к АБ имеет глубокие эволюционные корни и существовала задолго до начала применения АБ во врачебной практике.

Хозяйственная деятельность и устойчивость к АБ

Хотя гены устойчивости к АБ у бактерий возникли еще в древности, широкое распространение таких генов среди микроорганизмов началось после начала использования антибактериальных средств в медицине.

Активное и повсеместное применение антибактериальных средств послужило мощнейшим эволюционным инструментом, способствуя селекции и распространению бактерий с измененным геномом. Более 100 тыс.

тонн АБ, производимых ежегодно, заставляют микроорганизмы проявлять чудеса приспособляемости.

По сути, начав активно использовать антибиотики, человек неожиданно для себя поставил широкомасштабный и планомерный эксперимент по отбору устойчивых бактерий. Следует особо подчеркнуть, что в результате этого в клинике произошел отбор не только генов устойчивости, но и особых систем, значительно ускоряющих приобретение новых генов устойчивости за счет ГПГ.

Это привело к тому, что АБ, которые еще недавно успешно использовались для борьбы с самыми различными возбудителями инфекций, теперь в подавляющем большинстве случаев оказываются неэффективными.

Ведь в процессе эволюции у бактерий выработаны многочисленные приспособительные механизмы, позволяющие быстро меняться и выживать в условиях самого жесткого отбора, будь он естественным или искусственным.

Нынешняя опасная ситуация, сложившаяся в борьбе с инфекциями, напрямую связана с огромным количеством производимых АБ.

Большинство из них плохо усваивается человеком и животными, в результате чего от 25% до 75% потребляемых антибактериальных средств без изменений выводится из организма с калом и мочой, попадая затем вместе с водой в естественные водоемы.

По всему миру ученые регулярно находят в городских сточных водах высокую концентрацию АБ после их использования в медицине и животноводстве. И никакие очистные сооружения не в силах этому противостоять.

Такая ситуация прямо способствует распространению резистентности к АБ: бактерии, живущие в естественной среде, после контакта с малыми дозами АБ из очистных сооружений приобретают к ним устойчивость.

Подтверждением этому служит тот факт, что в местах слива сточных вод постоянно обнаруживаются бактерии с генами устойчивости к АБ, а также бактериофаги, передающие эти гены бактериям. Кроме того, использование для удобрения полей навоза животных, получавших антибиотики, также приводит к заметному увеличению в почве бактерий, содержащих гены устойчивости. Эти гены потом могут передаваться бактериям, живущим на растениях, а затем с растительной пищей попадать в кишечник человека и захватываться кишечной микрофлорой.

В немалой степени способствует распространению устойчивости к АБ заведенная в животноводстве практика создания крупных комплексов с многотысячными поголовьями. Плазмиды с генами устойчивости, R-плазмиды, очень быстро распространяются на ограниченном пространстве с большим количеством животных.

И здесь уже можно увидеть социальные причины увеличения резистентности к АБ. Постепенная миграция сельских жителей в города приводит к исчезновению небольших животноводческих хозяйств и замене их гигантскими комплексами, которые являются прекрасным резервуаром для накопления факторов резистентности.

В таких комплексах гены устойчивости к АБ приобретают не только животные, но и люди из обслуживающего персонала.

Еще одним важным фактором распространения устойчивости к АБ оказывается принятое сегодня за правило применение субтерапевтических доз АБ в животноводстве в качестве факторов роста. Директор ВОЗ М.

 Чен привела поразительные данные о том, что более половины всех производимых сегодня антибиотиков скармливают животным для их быстрого роста: «Количество антибиотиков, используемых среди здоровых животных, превышает количество антибиотиков, используемых среди нездоровых людей».

Еще одной ключевой причиной распространения устойчивости к АБ стало необоснованное назначение их врачами (наряду с самолечением).

Вообще, как это ни парадоксально, любые контакты со сферой здравоохранения несут в себе повышенный риск заразиться бактериями, устойчивыми к целому спектру АБ.

Нужна по-настоящему стерильная чистота, аккуратность и ответственность, чтобы противостоять распространению устойчивых штаммов в таких медицинских учреждениях.

Выход есть!

Но даже из такой сложной ситуации есть выход. И здесь будет уместно привести два примера. Дания в конце 1990-х первой в Европе ввела запрет на использование антибиотиков в качестве стимуляторов роста животных. Результаты такого шага не заставили себя ждать.

Международная группа экспертов показала, что отказ Дании от АБ в животноводстве не только не нанес большого ущерба доходам фермеров, но и способствовал значительному снижению факторов устойчивости к АБ на фермах и в мясе животных. В выигрыше оказались все, кроме производителей АБ.

Германия, запретив использование АБ авопарцина на птицефермах, тоже добилась внушительных результатов: количество энтерококков, устойчивых к ванкомицину (аналогу авопарцина), за четыре года после запрета снизилось в три раза.

Налицо непростая ситуация. Человечество стоит перед очень сложной многогранной проблемой. Научные исследования показали, насколько сложно устроены биологические процессы у живых организмов и как осторожно нужно вмешиваться в их естественный ход.

Появление в последние десятилетия устойчивых к лекарствам супербактерий и множества новых инфекций — лучшее тому подтверждение. Бездумное применение антибиотиков создало реальную угрозу для человечества.

И для того, чтобы устранить или хотя бы уменьшить эту угрозу, потребуются большие усилия, и в первую очередь правительств и научно-медицинского сообщества.

1. Выступление гендиректора ВОЗ М. Чен2. Петрова М.А. и соавт. Изучение ассоциации генов strA-strB с плазмидами и транспозонами у современных и древних бактерий. Генетика. 2008, 44(9): 112–116.

3. Allen H.K.

, Donato J., Wang H.H., Cloud-Hansen K.A., Davies J., Handelsman J. Call of the wild: antibiotic resistance genes in natural environment. Nat Rev Microbiol. 2010, 8(4): 251–259. DOI:10.1038/nrmicro2312.

4. D’Costa V. M. et al. Antibiotic resistance is ancient. Nature. 2011, 477(7365):457–461. DOI:10.1038/nature10388.
5. Cantas L., Shah S.Q., Cavaco L.M., Manaia C.M., Walsh F., Popowska M., Garelick H., Bürgmann H., Sørum H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 2013, 4: Article 96. DOI:10.3389/fmicb.2013.00096
6. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009, 78: 119–146. DOI:10.1146/annurev.biochem.78.082907.145923

Источник: https://elementy.ru/lib/432629

Резистентность к антибиотикам: виды устойчивости бактерий

Резистентность микроорганизмов

Препараты против бактерий были изобретены меньше 100 лет назад, однако у микробов сразу же началась вырабатываться резистентность к антибиотикам.

О том, что такое резистентность, задумывался каждый человек, который слышал об этом понятии от врача или простого обывателя. Резистентность — развитие терпимости и устойчивости к антибактериальному средству.

С каждым днем антибиотики становятся менее эффективными, неправильные действия человека усугубляют этот процесс.

Виды резистентности

Специалисты выделяют два вида устойчивости бактерий: приобретенный, природный. Приобретенная сопротивляемость возникает в ходе различных мутаций и передачи гена от одной бактерии другой. Стоит отметить, что человек может способствовать этим процессам. Природный вид имеется у бактерии изначально. Существуют микроорганизмы, которые по своей природе устойчивы к тому или иному препарату.

Стоит отметить, что в данный момент ученым еще не удалось создать идеальный антибиотик. К любому даже самому современному антибиотику рано или поздно будет выработана устойчивость. Например, первый в своем роде антибиотик пенициллин на сегодняшний день имеет крайне низкую эффективность.

Перед врачами и учеными стоит непростая задача, которая заключается в постоянном выпуске антибиотиков, которые были бы эффективны против всех известных микробов. В данный момент антибактериальные средства сменили уже 4 поколения.

Каким образом развивается приобретенная резистентность

Если с природной устойчивостью микробов все понятно (это является их индивидуальной особенностью), то развитие приобретенной сопротивляемости вызывает у многих вопросы. Механизмы резистентности микроорганизмов очень сложны и подразделяются на несколько видов.

В первую очередь выделяют мутацию, которая развивается после контакта с антибиотиком. Микробы передают эту способность следующим поколениям. Именно поэтому их нужно уничтожать до конца. Многие врачи говорят людям о том, что, если курс лечения будет прерван, у бактерий появится резистентность к лекарствам.

На сколько быстро будет развиваться устойчивость, зависит от следующих факторов:

  • тип патогенной флоры;
  • вида лекарственного средства;
  • индивидуальных условий.

Стоит отметить, что существуют разные виды проявления резистентного ответа к антибиотикам. Бактерии сопротивляются лекарству следующим образом:

  • усилением собственной мембраны (это мешает лекарственному средству проникать внутрь микроорганизма);
  • развитием способности к выведению лекарства (ученые и врачи называют этот процесс эффлюкс);
  • уменьшением активности воздействия препарата за счет специальных ферментов.

Как правило, серьезная резистентность возникает, когда определенный штамм микроорганизмов сопротивляется лекарству несколькими способами.

В формировании сопротивляемости большую роль играет тип бактерии. Быстрее всего к пагубному воздействию лекарства привыкают:

  • синегнойные палочки;
  • стафилококки;
  • эшерихии;
  • микоплазмы.

Антибиотики широкого спектра воздействуют одновременно на несколько видов патологических элементов. При их неправильном приеме в будущем сразу у нескольких типов инфекций будет развиваться терпимость к воздействию медикамента.

Как действуют антибиотики

Несмотря на то, что антибактериальные средства — часть жизни человека, не все знают о том, как они действуют. Механизм действия антибиотиков достаточно сложен, описать его кратко будет проблематично.

Антибиотик — лекарственное средство, которое борется с различными микробами. Это означает, что его используют только для лечения бактериальных болезней, так как антибактериальные лекарства способны воздействовать только на молекулярные ДНК бактерии (грибки нечувствительны к ним). Существуют два вида:

  • природные (первое антибактериальное средство пенициллин являлось плесневым грибком, действующее вещество которого называлось аминопенициллановой кислотой);
  • синтетические (все медикаменты, полученные искусственным путем).

Как правило, синтетические варианты эффективнее. Тяжелые и легкие болезни лечатся посредством их использования. Существуют классы антибиотиков.

Каждый класс обычно назван в честь главного действующего вещества медикамента. У представителей разных классов эффективность сильно варьируется. Существуют как тяжелые, так и легкие противомикробные средства.

В структуре мощных классов находятся несколько химических элементов.

Стоит отметить, что антибактериальные средства не способны бороться с вирусами и грибками. Люди могут не видеть разницы, это приведет к серьезным последствиям.

Однако при лечении тяжело протекающих вирусных заболеваний (простуда, вирусная ангина) могут использоваться препараты против микробов для профилактики осложнений.

Нередко на фоне тяжело протекающих болезней бактерии начинают переходить в активную фазу, вызывая опасные осложнения.

Как происходит лечение

Воздействие на бактерии можно описать только научным языком. В зависимости от типа антибактериального средства, действие на микроорганизм разное. задача лекарств — прекратить процессы пагубного воздействия микроба на организм человека. Делают это они двумя путями:

  • уничтожают (лекарства, которые действуют таким образом именуются бактерицидными);
  • останавливают их размножение (такие препараты именуются бактериостатическими).

В зависимости от типа бактерии, состояния человека и других индивидуальных особенностей, подбирается конкретный медикамент. Стоит отметить, что бактерицидные и бактериостатические лекарства действуют разными путями.

Например, уничтожением вредоносной бактерии посредством проникновения через клеточную мембрану, нарушая процессы синтеза клеточной стенки, или уничтожением микроба за счет прерывания процессов синтезов белка.

Еще один способ уничтожение его ДНК, такое можно осуществить за счет ингибиторов матричных биосинтезов. Способов уничтожить патогенную микробную клетку много.

Механизмы действия антибиотиков на определенные микроорганизмы всегда одинаковы. Антибиотик подбирается, исходя из результатов обследований. Сейчас для каждого микроба есть возможность подобрать специализированный препарат. В случае если диагностика не дает результатов, подбираются средства широкого спектра действия.

Вариантов того, как будет действовать лекарство очень много. Резистивность бактерий к антибиотикам развивается намного быстрее, если человек использует лекарство по любым причинам. Практически все виды антибактериальных лекарств наносят небольшой вред организму.

Вред организму

Любое лекарственное средство воздействуют на организм человека как с положительной, так и с отрицательной стороны.

Не существует ни одного лекарства, которое имело бы терапевтический эффект, но не имело бы побочных эффектов. Вред антибактериальных лекарств известен многим. Иногда он значительно преувеличен.

С побочными эффектами, которые вызываются приемом таких препаратов, должен ознакомиться каждый человек.

Люди знакомы с побочным эффектом нарушения микрофлоры кишечника. В организме человека есть и полезные бактериальные организмы, которые страдают при приеме противомикробных таблеток. Помимо этого, выделяют следующие неприятные явления:

  • аллергические реакции;
  • развитие кандидозов (грибковые инфекции часто сдерживаются за счет микробов);
  • развитие болезней печени (при регулярном приеме большого количества антибиотиков оказывается токсический эффект на печень);
  • заболевания кровеносной системы.

Механизмы действия антибактериальных препаратов на бактерии и организм человека полностью изучены. Людям остается только обращаться за квалифицированной помощью.

Это поможет снизить шансы развития побочных эффектов и получить максимальную пользу от приема лекарственных средств.

Избежать негативного влияния от приема антибиотиков просто, главное, соблюдать дозировки и не превышать определенные сроки приема. При хронических заболеваниях для лечения лучше принимать медикаменты курсами.

Как подбираются

Антибактериальные таблетки или уколы подбираются, исходя из результатов диагностики. Когда человек чувствует себя плохо, он обращается к врачу. Специалист обязательно назначает анализы и проводит внешние обследования. Именно на основе анализов удается подобрать правильный препарат.

Главным диагностическим средством выступает анализ на чувствительность к антибиотикам патогенной микрофлоры. Проводится изучение биологического материала пораженной области. Например, если речь идет о заболеваниях мочеполовой системы, то берется анализ мочи с дальнейшим бактериальным посевом.

Стоит отметить, что узкоспециализированный препарат будет эффективнее, чем аналог с широким спектром действия. Чтобы была возможность назначить такой медикамент, необходимо точно определить возбудителя заболевания.

Поколения и резистентность

Существует 4 поколения антибактериальных медикаментов. Последнее поколение демонстрирует наибольшую эффективность. В структуре противомикробных таблеток или уколов находится множество сложных элементов. Препараты 4 поколения обладают не только большей лекарственной эффективностью, но и менее токсичны для организма.

Средства последнего поколения принимаются меньшее количество раз в день. Эффект от их использования достигается гораздо быстрее. С их помощью возможно вылечить хроническое заболевание.  Ингибирование ферментов микроба у современных препаратов очень высокая. При правильных действиях медикаменты последнего поколения будут эффективны несколько десятилетий.

В больницах часто назначают лекарства 3 и 4 поколения. Простые заболевания поддаются терапии при использовании препаратов 3 поколения. Они обладают большей токсичностью, но приобретаются в аптеке по более выгодной цене.

Современное поколение не так широко распространенно и имеет стоимость выше, чем у более устаревших аналогов. Прием самого современного лекарства не всегда целесообразен. Пользоваться необходимо тем медикаментом, который оказывает нужный эффект.

Если пренебрегать этим правилом, вызывается резистивность к современным лекарствам.

Пока еще микробы не имеют резистентность к антибиотикам последнего поколения. Хотя в условиях больниц и мест скопления различных патогенных микроорганизмов уже ходят слухи о том, что существуют невероятно устойчивые штаммы стафилококков и стрептококков. Со слов ученых антибиотикорезистентность способна развиваться бесконечно.

Более того, об этом процессе было известно до появления первого антибиотика. Это глобальная проблема, так как создавать эффективные препараты все сложнее. Резистентность — особенность живых организмов. Это значит, что, в данный момент создать лекарство, к которому не будет привыкания — невозможно. Однако ученые двигаются в сторону изобретения идеального медикамента.

Скорее всего, это будет абсолютно новый класс лекарств.

Принципы применения для предотвращения резистентности

От правильных действий человека зависит, как быстро микробы будут развиваться. Если будет вестись беспорядочный прием противомикробных медикаментов, в нужный момент лекарство просто не подействует. Любые антибиотики по механизму своего действия со временем вызывают резистентность.

Выделяют следующие правила приема антибиотиков:

  • всегда заканчивать курс, даже если наступило улучшение;
  • принимать медикамент по инструкции или рекомендациям врача;
  • после приема проводить профилактику дисбактериоза;
  • избегать самостоятельного назначения и использования антибактериальных препаратов.

Если соблюдать это, удастся повысить пользу от терапии и снизить частоту возникновения побочных эффектов. Если микробы будут уничтожены, то резистентность не передастся новым микроорганизмам. Стоит понимать, что соблюдение норм приема антибиотиков необходимо, чтобы при столкновении с серьезной болезнью (бактериальная пневмония, менингит) воздействовать на патогенные инфекции и возбудителей.

Источник: https://proantibiotik.ru/vzroslym/pochemu-razvivaetsya-rezistentnost-k-raznym-antibiotikam

Устойчивость бактерий к антибиотикам и бактериофагам, дезинфектантам и факторам внешней среды

Резистентность микроорганизмов

Одной из наиболее актуальных проблем в лечении инфекционных заболеваний является устойчивость бактерий к определенным группам медикаментов. В современной медицине различают естественную и приобретенную устойчивость (резистентность):

  1. Приобретенная лекарственная устойчивость – развивается как результат приобретения микробом новых свойств либо потеря старых под действием различных факторов окружающей среды, в том числе благодаря дезинфектантам.
  2. Естественная (или природная) лекарственная устойчивость – является врожденным свойством определенной бактерии.

Большая часть бактерий обладает более выраженной изменчивостью, нежели у представителей высшего класса, что объясняется коротким сроком развития и другими аспектами внешней среды.

Благодаря внешним дезинфектантам может провоцироваться образование спор, которые практически неуязвимы для воздействия. Появление спор – это способ выживания для бактерий, которые попали в неблагоприятные условия.

С помощью спор бактерия может пережить этот период и дождаться более подходящих для жизни условий.

Особенности устойчивости к дезинфицирующим средствам

Довольно давно установлено, что микробы могут формировать устойчивость к дезинфектантам.

Бактериальная устойчивость к дезинфектантам представляет собой свойство микробов, которое заключается в способности их к размножению и росту в условиях прикосновения к дезинфектантам определенных концентраций. Выделяют естественную и приобретенную бактериальную устойчивость к внешним дезинфектантам.

Известны разнообразные методики исследования микробной устойчивости к дезинфектантам. Наиболее известна методика выяснения устойчивости к дезинфектантам Красильникова А.П., Гудковой Е.И.

Подобные методики обеспечивают не только оценку большей части дезинфицирующих средств, но и антибактериальной активности, присущей тем или иным внешним дезинфектантам.

Одной из наиболее распространенных является устойчивость бактерий к химическим веществам группы аммониевых соединений.

Для проведения исследования на выявление устойчивости к дезинфектантам применяют чистые бактериальные культуры.

Антибактериальная терапия

Обширное использование антибактериальных препаратов в практической медицине, а также ветеринарии способствовало распространению устойчивых к антибиотикам бактериальных клеток. Как результат, устойчивые бактерии делятся на:

  • резистентные (устойчивые) к одному препарату бактерии;
  • одновременно резистентные микроорганизмы к лекарствам нескольких фармакологических групп (множественная устойчивость).

Первая группа микроорганизмов может объединять резистентные к нескольким антибиотикам штаммы. В данном случае имеется в виду наличие близкого по химической природе состава.

Так, микробы, устойчивые к рифампицину, обладают резистентностью к стрептоварицину, так как этим антибиотикам присущий общий механизм воздействия – угнетение функциональности РНК-полимеразы.

Лекарственная устойчивость к стрептомицину свидетельствует также о резистентности к таким антибиотикам, как неомицин, дигидрострептомицин.

Основные механизмы образования резистентности

Основной механизм формирования вторичной устойчивости микроба к антибиотикам заключается в появлении генов резистентности, которые переносятся плазмидами и транспозонами. Различают следующие механизмы биохимической устойчивости к антибиотикам:

  • перестройка в структуре мишени воздействия;
  • инактивация антибактериального препарата;
  • активное освобождение бактериальной клетки от антибиотика;
  • изменение проницаемости наружных структур бактерии;
  • образование «шунта» метаболизма.

Нарушение структуры мишени воздействия подразумевает изменение структуры ферментов, которые стимулируют выработку пептидогликана. Лекарственная резистентность к внешним антибиотикам, имеющим разное происхождение, развивается вследствие невозможности распознавания медикаментами мишеней.

Инактивация антибактериального препарата происходит в результате нарушения фактора β-лактамного кольца. Основной механизм резистентности к аминогликозидам – ферментативная модификационная инактивация этого фактора.

Плазмиды микробов содержат в своем составе гены, способные стимулировать ацетилирование либо фосфорилирование антибиотика.

Вторичная лекарственная устойчивость микроорганизмов к антибактериальным лекарствам (цефалоспоринам и пенициллинам) связана синтезом бета-лактамаз – это ферментные вещества, которые разрушающе действуют на активность фактора β-лактамного кольца.

Выделяют 2 типа бета-лактамаз – цефалоспориназы и пенициллазы, однако каждый из них активен по отношению к антибиотикам обеих групп, так как направлен на область фактора β-лактамного кольца.

Для угнетения активности бета-лактамаз рекомендуют добавлять в лечение к антибиотикам клавулановую кислоту, а также сульбактам (сульфоны пенициллановой кислоты).

Активное освобождение микробной клетки от антибиотика осуществляется специальными транспортными системами цитоплазматической мембраны, и антибактериальные препараты не достигают цели.

Изменение проницаемости наружных структур для различных веществ определяется мутацией, в результате чего теряется способность к транспорту веществ через стенку бактерии. Образование метаболического «шунта» объясняется приобретением генов, которые позволяют образовывать «обходные» пути метаболизма для образования ферментов нечувствительных к антибиотикам.

Температура и ее влияние на микробы

Важную роль в жизнедеятельности бактерий имеет регуляция температуры, которая зависит от условий окружающей среды. Под действием температуры окружающей среды изменяется не только скорость протекания химических реакций, но и развивается перестройка структуры протеинов, воды, регулируется перемещение фазовых жиров.

Как правило, активность бактерий и их жизнедеятельность наиболее оптимальны при температуре 0-60°С.

Нижняя граница жизненной температуры для бактерий обусловлена кристаллизацией воды при нулевом значении показателя температуры окружающей среды.

Верхняя граница обусловлена разрушением белковых структур при воздействии высокой температуры. В зависимости от устойчивости к различной температуре окружающей среды различают следующие типы бактериальных клеток:

  1. Мезофильные – большая часть известных бактерий, оптимальные значения температуры для их жизнедеятельности составляют +3-50°С. Наиболее известный представитель – E. Coli.
  2. Психрофильные – рост таких микроорганизмов возможен при температуре от –10 до 20°С. Среди них выделяют облигатные (не растут при температуре 20°С и выше), факультативные (верхняя граница значений жизненной температуры может быть выше).
  3. Термофильные – подразделяются на несколько групп: термотолерантные – растут при температуре 10-60°С; факультативные – температуре от 40 до 70°С; экстремальные – температуре от 60 до 110°С.

Известны случаи обнаружения микроорганизмов при температуре воды 250-300°С. Существуют также эндотермные (образуют тепловую энергию сами) и эктотермные организмы, температура которых связана со значениями температуры окружающей среды.

Термоустойчивость (или терморезистентность) – свойство микроба, которое заключается в его способности сохранять свою жизнедеятельность во время продолжительного нагревания при температуре окружающей среды выше допустимого максимума для конкретного типа бактерии. Наиболее устойчивы к высокой температуре окружающей среды формы бактерий в виде спор.

Термофильные бактерии живут в основном в горячих источниках

Нормальные виды бактерий характеризуются наличием антагонистического действия. Такая активность препятствует разрушающему эффекту. Это относится к следующим факторам:

  • гуморальной системе,
  • клеточным факторам защиты.

Фагоцитоз – это механизм защиты бактериальной клетки от чужеродных объектов, который реализуется благодаря разным мутациям и фагоцитам. Данный процесс реализуется благодаря нейтрофилам (фагоцитам), которые выполняют защитные функции по отношению к чужеродным бактериям и веществам. К фагоцитам относятся макрофаги и микрофаги.

Фагоцитам свойственны три основные функции: защитная, секреторная, представляющая (отвечающая за иммунитет). Благодаря фагоцитам и соответствующим факторам среды образуется стойкий иммунитет против многих заболеваний.

Отдельное место отводится бактериофагам, которые представляют собой вирусы, избирательно повреждающие бактериальные клетки.

К бактериофагам в медицине обращаются как к альтернативному методу лечения антибиотиками. Микробы, которые имеют устойчивость к антибиотикам, не имеют стойкости к бактериофагам.

Особенно хорошо поддаются бактериофагам микробы, имеющие полисахаридную мембрану, которая защищает их от антибиотиков.

Аэробные спорообразующие микробы

Одними из наиболее устойчивых бактерий к различным факторам окружающей среды являются микроорганизмы, обладающие способностью к образованию спор.

Способность бактерий к образованию спор широко применяется в промышленности для производства ферментов, органических кислот, антибиотиков и других веществ.

Встречаются и патогенные для человека типы спор, такие как сибиреязвенная бацилла.

Образование спор некоторых бактерий является основной проблемой в консервном производстве, консервации крови, пищевых и сельскохозяйственных продуктов. Распространенность спор в природе довольно широка, так как такие бактерии обнаруживаются повсеместно. Способность к образованию спор – один из уникальных механизмов устойчивости микробов к различным повреждающим действиям окружающего мира.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Источник: https://probakterii.ru/prokaryotes/vital-functions/ustojchivost-bakterij.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть