Рибонуклеиновые кислоты
Рнк (рибонуклеиновая кислота) | биология
РНК (рибонуклеиновая кислота), так же как и ДНК, относится к нуклеиновым кислотам. Молекулы-полимеры РНК намного меньше, чем у ДНК. Однако в зависимости от типа РНК количество входящих в них нуклеотидов-мономеров различается.
В состав нуклеотида РНК в качестве сахара входит рибоза, в качестве азотистого основания — аденит, гуанин, урацил, цитозин. Урацил по строению и химическим свойствам близок к тимину, который обычен для ДНК. В зрелых молекулах РНК многие азотистые основания модифицированы, поэтому в реальности разновидностей азотистых оснований в составе РНК намного больше.
Рибоза в отличие от дезоксирибозы имеет дополнительную -ОН-группу (гидроксильную). Это обстоятельство позволяет РНК легче вступать в химические реакции.
Главной функцией РНК в клетках живых организмов можно назвать реализацию генетической информации. Именно благодаря разным типам рибонуклеиновой кислоты генетический код считывается (транскрибируется) с ДНК, после чего на его основе синтезируются полипептиды (происходит трансляция).
Итак, если ДНК в основном отвечает за хранение и передачу из поколения в поколение генетической информации (основной процесс – репликация), то РНК реализует эту информацию (процессы транскрипции и трансляции).
При этом транскрипция происходит на ДНК, так что этот процесс относится к обоим типам нуклеиновых кислот и тогда с этой точки зрения можно сказать, что и ДНК отвечает за реализацию генетической информации.
При более подробном рассмотрении функции РНК намного разнообразнее. Ряд молекул РНК выполняют структурную, каталитическую и другие функции.Существует так называемая гипотеза РНК-мира, согласно которой вначале в живой природе в качестве носителя генетической информации выступали только молекулы РНК, при этом другие молекулы РНК катализировали различные реакции. Данная гипотеза подтверждена рядом опытов, показывающих возможную эволюцию РНК. На это указывает и то, что ряд вирусов в качестве нуклеиновой кислоты, хранящей генетическую информацию, имеют молекулу РНК.
Согласно гипотезе РНК-мира ДНК появилась позже в процессе естественного отбора как более устойчивая молекула, что важно для хранения генетической информации.
Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная. Обозначаются они соответственно иРНК (или мРНК), рРНК, тРНК.
Информационная РНК (иРНК)
Почти все РНК синтезируются на ДНК в процессе транскрипции. Однако часто транскрипция упоминается как синтез именно информационной РНК (иРНК). Связано это с тем, что последовательность нуклеотидов иРНК в последствии определит последовательность аминокислот синтезируемого в процессе трансляции белка.
Перед транскрипцией нити ДНК расплетаются, и на одной из них с помощью комплекса белков-ферментов синтезируется РНК по принципу комплементарности, так же как это происходит при репликации ДНК. Только напротив аденина ДНК к молекуле РНК присоединяется нуклеотид, содержащий урацил, а не тимин.
На самом деле на ДНК синтезируется не готовая информационная РНК, а ее предшественник — пре-иРНК. Предшественник содержит участки последовательности нуклеотидов, которые не кодируют белок и которые после синтеза пре-иРНК вырезаются при участии малых ядерных и ядрышковых РНК («дополнительные» типы РНК). Эти удаляющиеся участки называются интронами.
Остающиеся части иРНК называются экзонами. После удаления интронов экзоны сшиваются между собой. Процесс удаления интронов и сшивания экзонов называется сплайсингом. Усложняющей жизнь особенностью является то, что можно вырезать интроны по-разному, в результате получатся разные готовые иРНК, которые будут служить матрицами для разных белков.
Таким образом, вроде бы один ген ДНК может играть роль нескольких генов.
Следует отметить, что у прокариотических организмов сплайсинга не происходит. Обычно их иРНК сразу после синтеза на ДНК готова к трансляции. Бывает, что пока конец молекулы иРНК еще транскрибируется, на ее начале уже сидят рибосомы, синтезирующие белок.
После того как пре-иРНК созревает в информационную РНК и оказывается вне ядра, она становится матрицей для синтеза полипептида.
При этом на нее «насаживаются» рибосомы (не сразу, какая-то оказывается первой, другая — второй и т. д.). Каждая синтезирует свою копию белка, т. е.
на одной молекуле РНК могут синтезироваться сразу несколько одинаковых белковых молекул (понятно, что каждая будет находиться на своей стадии синтеза).Рибосома, передвигаясь от начала иРНК к ее концу, считывает по три нуклеотида (хотя вмещает шесть, т. е. два кодона) и присоединяет соответствующую транспортную РНК (имеющую соответствующий кодону антикодон), к которой присоединена соответствующая аминокислота.
После этого с помощью активного центра рибосомы ранее синтезированная часть полипептида, соединенная с предшествующей тРНК, как-бы «пересаживается» (образуется пептидная связь) на аминокислоту, прикрепленную к только что пришедшей тРНК.
Таким образом, молекула белка постепенно увеличивается.
Когда молекула информационной РНК становится не нужна, клетка ее разрушает.
Транспортная РНК (тРНК)
Транспортная РНК — это достаточно маленькая (по меркам полимеров) молекула (количество нуклеотидов бывает разным, в среднем около 80-ти), во вторичной структуре имеет форму клеверного листа, в третичной сворачивается в нечто подобное букве Г.
Функция тРНК – присоединение к себе соответствующей своему антикодону аминокислоты. В дальнейшем соединение с рибосомой, находящейся на соответствующем антикодону кодоне иРНК, и «передача» этой аминокислоты. Обобщая, можно сказать, что транспортная РНК переносит (на то она и транспортная) аминокислоты к месту синтеза белка.
Живая природа на Земле использует всего около 20-ти аминокислот для синтеза различных белковых молекул (на самом деле аминокислот куда больше).
Но поскольку, согласно генетическому коду, кодонов больше 60-ти, то каждой аминокислоте может соответствовать несколько кодонов (на самом деле какой-то больше, какой-то меньше).
Таким образом, разновидностей тРНК больше 20, при этом разные транспортные РНК переносят одинаковые аминокислоты. (Но и тут не так все просто.)
Рибосомная РНК (рРНК)
Рибосомную РНК часто также называют рибосомальной РНК. Это одно и то же.
Рибосомная РНК составляет около 80% всей РНК клетки, так как входит в состав рибосом, коих в клетке бывает достаточно много.
В рибосомах рРНК образует комплексы с белками, выполняет структурную и каталитическую функции.
В состав рибосомы входят несколько разных молекул рРНК, отличающиеся между собой как по длине цепи, вторичной и третичной структуре, выполняемым функциям. Однако их суммарная функция — это реализация процесса трансляции. При этом молекулы рРНК считывают информацию с иРНК и катализируют образование пептидной связи между аминокислотами.
Источник: https://biology.su/molecular/rna
Генетики расшифровали самую древнюю РНК из печени щенка. Он пролежал 14 тыс. лет в вечной мерзлоте Сибири
© Наталья Гредина. Вечная мерзлота в Якутии
06 Авг 2019, 08:26
РНК (рибонуклеиновая кислота) играет важную роль в кодировании, прочтении, регуляции и выражении генов. Она состоит из длинной цепи нуклеотидов. Их последовательность позволяет кислоте кодировать генетическую информацию.
Исследовательская группа доказала, что древняя РНК не только сохраняется в достаточно хорошем для секвенирования состоянии, но ее можно использовать и для идентификации тканей.
«Успех расшифровки заключается в том, что молекула РНК быстро разлагается, ее крайне редко удается извлечь, тем более „прочитать“, когда речь идет об археологических и палеонтологических находках, — рассказал заведующий экспозиционным отделом лаборатории Музея мамонта Северо-Восточного федерального университета Сергей Федоров. — Расшифровка РНК щенка открывает новые горизонты перед наукой о вымерших животных».
Исследования и анализ древней РНК могут дать более глубокое понимание эволюции таких вирусов, как ВИЧ, лихорадка Эбола, желтая лихорадка и лихорадка Западного Нила, считают ученые.
Ранее Тайга.инфо писала, что исследователи впервые обнаружили жидкую кровь в туше древнего жеребенка из Якутии.
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Page 3
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Page 4
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Page 5
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Page 6
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Page 7
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Page 8
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Page 9
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Page 10
09 Авг, 16:57
Жителей снова эвакуируют под Ачинском после взрывов на военном складе. Есть раненые
09 Авг, 15:48
Росгвардейцы не сопротивлялись толкавшим и оскорблявшим их жителям Междуреченска Дебаты на частном телеканале пройдут перед выборами мэра Новосибирска Минимальный набор продуктов новосибирца подорожал на 10% Начальник полиции застрелил мужа подруги в Забайкалье
Источник: https://tayga.info/148057
РИБОНУКЛЕИ́НОВЫЕ КИСЛО́ТЫ
Авторы: А. А. Богданов
РИБОНУКЛЕИ́НОВЫЕ КИСЛО́ТЫ (РНК), класс нуклеиновых кислот. Так же как и дезоксирибонуклеиновые кислоты (ДНК) – биополимеры, в нуклеотидной последовательности которых может быть записана генетич. информация.
В то же время они выполняют в клетке многие другие, характерные для белков функции: ферментативные (см. Рибозимы), регуляторные, транспортные, защитные и структурообразующие. В клетке и вирусных частицах РНК всегда связаны с белками, т. е.
функционируют в виде рибонуклеопротеиновых комплексов.
РНК открыты в 1889 нем. гистологом Р. Альтманом в дрожжах. В последующие 60 лет установлена химич. структура РНК и доказано, что они присутствуют в цитоплазме любой живой клетки, выполняя ключевую роль в биосинтезе белков; РНК были обнаружены также в вирусах растений и животных.
Строение РНК
В отличие от ДНК, все клеточные и большинство вирусных РНК представляют собой линейные однотяжевые полирибонуклеотиды. Они построены из четырёх видов нуклеозидных остатков (н. о.
) – аденозина (А), гуанозина (G), цитидина (С) и уридина (U), связанных друг с другом 3'–5'-фосфодиэфирными связями. Углеводные остатки в РНК представлены D-рибозой. Некоторые виды РНК содержат небольшое количество т. н. минорных нуклеотидов, в осн.
псевдоуридиловую кислоту (ψ), и нуклеотидные звенья, метилированные по остаткам рибозы или гетероциклич. оснований. Длина полинуклеотидных цепей РНК колеблется от нескольких десятков до нескольких тысяч нуклеотидных остатков. Накоплена значит.
информация о нуклеотидных последовательностях (н. п.
), или первичной структуре, РНК; её получают либо прямым секвенированием индивидуальных РНК, либо анализируя транскриптомы, в которых представлены все РНК, синтезирующиеся в данный момент в клетке, либо выводят теоретически из н. п. ДНК, в которых РНК кодированы. Анализ массивов данных о н. п. РНК осуществляется методами биоинформатики.
Принципы организации макромолекулярной структуры РНК сформулированы на рубеже 1950–60-х гг. Ж. Фреско и П. Доти (США) и А. С. Спириным. Было постулировано, что осн.
элементом вторичной структуры РНК являются короткие, зачастую несовершенные (с «выпетливаниями») антипараллельные двойные спирали, образуемые за счёт комплементарных взаимодействий смежных участков полинуклеотидной цепи.Двуспиральные участки РНК формируются как за счёт стандартного уотсон-криковского спаривания оснований (G-C и A-U), так и за счёт образования сравнительно небольшого количества нестандартных пар (G-U, G-A, U-U, A-C).
При компактном сворачивании цепи двуспиральные области в РНК могут быть образованы не только между соседними сегментами, но и между достаточно удалёнными областями полинуклеотидной цепи. С одного края двуспиральные участки замкнуты однотяжевыми сегментами разл.
длины и т. о. имеют вид «шпильки»; соседние «шпильки» также связаны друг с другом однотяжевыми участками. Доказано, что такой способ организации вторичной структуры является универсальным для всех однотяжевых РНК.
Элементы вторичной структуры РНК взаимодействуют друг с другом, в результате чего формируется компактная уникальная третичная структура РНК. Третичные контакты в РНК создаются взаимодействием её однотяжевых сегментов друг с другом и с двуспиральными сегментами.
Примером достаточно широко распространённого третичного контакта в РНК могут служить т. н. А-минорные взаимодействия, когда основания адениловых н. о. однотяжевых сегментов РНК встраиваются в желобки спиральных районов РНК, образуя там специфич. водородные связи.
Третичная структура РНК стабилизируется белками и ионами магния. Ныне известны пространственные структуры разл.
РНК как в свободном, так и в связанном с белками состоянии, полученные с атомным разрешением методами ядерного магнитного резонанса и рентгеноструктурного анализа.
Биосинтез РНК
Все клеточные РНК образуются в результате транскрипции генов, в которых они кодированы, с помощью ферментов РНК-полимераз. Процесс транскрипции протекает по принципу комплементарного копирования одной из цепей двуспиральной ДНК; т. о.
, РНК представляют собой полирибонуклеотидную копию одной из цепей ДНК и комплементарны другой её цепи. Процессы биосинтеза вирусных РНК весьма разнообразны, и для вируса иммунодефицита человека (ВИЧ), напр.
, включают стадию синтеза на РНК как на матрице однотяжевой ДНК (обратная транскрипция) с последующим превращением её в двуспиральную ДНК и интеграцией последней в геном клетки. В случае др.
РНК-содержащих вирусов реализуется механизм РНК-репликации, когда на вирионной РНК синтезируется комплементарная цепь, а образующаяся двуспиральная РНК служит матрицей для последующего синтеза точной копии вирусной РНК.
Все клеточные РНК и РНК мн. вирусов синтезируются в виде предшественников, существенно превышающих по длине «зрелые» РНК. РНК-предшественник подвергается специфич. для каждого вида РНК и тонко регулируемому процессингу.
Если гены, кодирующие данную РНК, содержат интроны, первичный транскрипт подвергается сплайсингу (в т. ч. альтернативному). Как правило, РНК-предшественник «разрезается» специфич. эндонуклеазами на фрагменты, которые укорачиваются соответствующими экзонуклеазами.
Во многих случаях вслед за этим происходит модификация концов молекулы РНК, напр. кэпирование 5′-концов (присоединение остатка 7-метилгуанозина) эукариотич. матричных рибонуклеиновых кислот (мРНК) и полиаденилирование их 3′ -концов.
Регуляция биосинтеза РНК происходит на всех стадиях транскрипции и процессинга с помощью спец. регуляторных белков. Кроме того, в состав самих РНК могут входить элементы, предназначенные для регуляции их синтеза.Нуклеотидная последовательность РНК может быть подвергнута редактированию. Так, в мРНК, синтезирующейся в митохондриях трипаносомы, происходит вставка большого числа уридиловых остатков, некодированных в ДНК, в результате чего её информац. содержание кардинально изменяется.
Редактируются также транскрипты мн. генов человека и животных. В этом случае происходит замена (путём дезаминирования) определённых единичных остатков А в мРНК на остатки инозина (I), а также С на U.
Разнообразие РНК и их функций
РНК принято подразделять на кодирующие и некодирующие. Среди кодирующих РНК гл. место занимают мРНК. В соответствии с «центр. догмой» молекулярной биологии (ДНК – РНК – белок) они переносят генетич.
информацию от ДНК к рибосомам, где она декодируется и реализуется в виде аминокислотных последовательностей белков.
Кодирующей функцией обладает РНК-компонент фермента теломеразы (теломеразная РНК), определённый сегмент которой служит матрицей для синтеза теломерных ДНК-повторов на концах линейных хромосом. Со специфич. белками связана также короткая матричная РНК, называемая направляющей РНК (англ.
guide RNA), участвующая в процессе редактирования мРНК. Она определяет, в какие участки мРНК будут введены дополнит. остатки U.
У всех бактерий существует транспортно-матричная РНК (тмРНК), кодирующая короткий пептид, наращиваемый на С-концы дефектных белков, синтез которых по какой-то причине не смогли довести до конца рибосомы. Кодируемый тмРНК пептид служит сигналом для протеаз, уничтожающих дефектные белки. Т. о., в этом случае РНК осуществляет контроль качества белков, синтезируемых бактериальной клеткой. К кодирующим РНК относятся все вирусные РНК, которые служат матрицами для синтеза ДНК и РНК, а также вирусных белков.
К числу некодирующих РНК относится группа, формирующая белоксинтезирующий аппарат клетки. Более 80% РНК любой клетки представлено рибосомными рибонуклеиновыми кислотами (рРНК) – гл. структурными и функциональными компонентами рибосом.
Функцию декодирования генетич. информации на рибосомах под контролем рРНК осуществляют транспортные рибонуклеиновые кислоты (тРНК). Они переносят в рибосому аминокислотные остатки для синтеза белков.
Когда рибосомы синтезируют секреторные или мембранные белки, с ними ассоциированы сигналузнающие РНК-белковые комплексы – т. н. SRP (от англ. signal recognition particles). В этих частицах РНК выполняют роль каркаса, на котором собираются белки, распознающие спец.сигнальные последовательности в синтезирующихся полипептидных цепях.
В регуляции процессов транскрипции и трансляции в клетке принимают участие многочисл. низкомолекулярные, или малые, и высокомолекулярные, или длинные, некодирующие РНК (мнкРНК и длнкРНК соответственно). Некоторые из них обладают рибозимной активностью и участвуют в процессинге др. РНК (напр.
, РНК-компонент бактериальной рибонуклеазы). В ядрах клеток эукариот присутствует семейство из 6–7 малых ядерных РНК (мяРНК), выполняющих гл. функцию на всех стадиях сплайсинга мРНК. Возможно, некоторые из них обладают рибозимной активностью. мнкРНК, локализующиеся в ядрышках эукариотич.
клеток, отвечают за специфич. метилирование предшественников рРНК, за превращение в них определённых остатков уридина в псевдоуридин; они играют ключевую роль в РНК-интерференции. Многие из длнкРНК транскрибируются с цепи ДНК, противоположной кодирущей мРНК.
Образуя комплементарные комплексы с мРНК вместе со специфич. белками, они полностью или частично подавляют экспрессию генов на уровне трансляции. Некодирующими РНК представлены транскрипты существенно большей части геномов всех организмов, чем кодирующими, т. е.
разнообразие таких РНК в десятки раз превышает разнообразие индивидуальных белков в клетке.
Открытие у РНК столь высокой структурной и функциональной пластичности, в частности способности к самовоспроизведению и самопревращениям, позволяет предполагать, что при зарождении жизни на Земле эта нуклеиновая кислота была первым информац. биополимером, предшествовавшим появлению ДНК и белков.
Источник: https://bigenc.ru/biology/text/3508789