Типы рецепторов

Образовательный портал

Типы рецепторов
04.12.2016 17:23 Воробьев Антон Сергеевич

Статья по анатомии и физиологии человека

Воробьев Антон Сергеевич

Рецептор (от лат. recipere – получать) – чувствительное нервное окончание или специализированная клетка, преобразующее воспринимаемое раздражение в нервные импульсы. Рецептор гораздо более восприимчив к внешним воздействиям, чем другие органы и нервные волокна. Чувствительность этого органа особенно высока и обратно пропорциональна порогу. То есть если говорят, что порог раздражения низкий, это значит, что чувствительность рецептора высокая. Рецептор – это специализированный аппарат. Каждый рецептор предназначен для восприятия одного из видов раздражения. Все рецепторы характеризуются наличием специфического участка мембраны, содержащего рецепторный белок, обусловливающий процессы рецепции. Основной характеристикой рецепторного аппарата организма является его приспособленность к восприятию раздражений, повышенная чувствительность к ним и специализация к определенным видам воздействия.

Существуют несколько классификаций рецепторов:

  • По положению в организме
    • Экстерорецепторы (экстероцепторы) — расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)
    • Интерорецепторы (интероцепторы) — расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)
      • Проприорецепторы (проприоцепторы) — рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов
  • По способности воспринимать разные стимулы
    • Мономодальные — реагирующие только на один тип раздражителей (например, фоторецепторы — на свет)
    • Полимодальные — реагирующие на несколько типов раздражителей (например, многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы)
  • По адекватному раздражителю:
    • Хеморецепторы — воспринимают воздействие растворенных или летучих химических веществ
    • Осморецепторы — воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды)
    • Механорецепторы — воспринимают механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)
    • Фоторецепторы — воспринимают видимый и ультрафиолетовый свет
    • Терморецепторы — воспринимают понижение (холодовые) или повышение (тепловые) стимулы
    • Болевые рецепторы, стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность ноцицепторов, которая не позволяет отнести их, например, к «высокопороговым терморецепторам», состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов.
    • Электрорецепторы — воспринимают изменения электрического поля
    • Магнитные рецепторы — воспринимают изменения магнитного поля

У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции — осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции — зрение. Терморецепторы есть в коже и некоторых внутренних органах. Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы. Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, воспринимающие pH, концентрации углекислого газа и кислорода в крови, включены в регуляцию дыхания и т. д.   Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток.

Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини — капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются вподкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент началавоздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то естьпредставляют грубую чувствительность.
  • Тельца Мейснера — рецепторы давления, расположенные в дерме. Представляют собой слоистую структурус нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малымирецептивными полями, то есть представляют тонкую чувствительность.
  • Диски Меркеля — некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.
  • Рецепторы волосяных луковиц — реагируют на отклонение волоса.
  • Окончания Руффини — рецепторы растяжения. Являются медленноадаптирующимися, обладают большимирецептивными полями.

Рецепторы мышц и сухожилий

  • Мышечные веретена — рецепторы растяжения мышц, бывают двух типов:
    • с ядерной сумкой
    • с ядерной цепочкой
  • Сухожильный орган Гольджи — рецепторы сокращения мышц. При сокращении мышцы сухожилиерастягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа — инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 — тельцам Паччини.

Рецепторы сетчатки глаза

Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которыесодержат светочуствительные пигменты. Палочки чуствительны к очень слабому свету, это длинные и тонкиеклетки, сориентированные по оси прохождения света. Все палочки содержат один и тот же светочуствительный пигмент. Колбочки требуют намного более яркого освещения, это короткиеконусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свойсветочуствительный пигмент — это и есть основа цветового зрения.
Под воздействием света в рецепторах происходит выцветание — молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны). Практическиу всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединенанебольшая молекула, близкая к витамину A. Эта молекула и представляет собой химическитрансформируемую светом часть. Белковая часть выцвевшей молекулы зрительного пигмента активируетмолекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата, участвующих в открытии пор мембраны для ионов натрия, в результате чего поток ионов прекращается — мембрана гиперполяризуется.
Чуствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышкусвета такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки неспособны реагировать на изменения освещённости, когда свет настолько ярок, что все натриевые поры ужезакрыты.
Литература:

  • Дэвид Хьюбел — «Глаз, мозг, зрение» перевод с англ. канд. биол. наук О. В. Левашова, канд. биол. наук Г. А. Шараева под ред. чл.-корр. АН СССР А. Л. Бызова, Москва «Мир», 1990
  • http://anatomus.ru/articles/rol-retseptorov.html

 
  09.08.2019 15:41

You have no rights to post comments

Авторизация

  • Забыли данные входа?
  • Регистрация

Источник: http://ext.spb.ru/2011-03-29-09-03-14/152-special-education/10737-Retseptory_i_ikh_rol_v_organizme_cheloveka.html

РЕЦЕПТОРЫ

Типы рецепторов

РЕЦЕПТОРЫ (лат. receptor принимающий) — специализированные чувствительные образования, приспособленные для восприятия адекватных для организма стимулов (раздражителей).

В научной литературе используют также понятие «сенсорные рецепторы» для обозначения Р., обеспечивающих чувствительность (см.) организма.

Тем самым разграничиваются сферы применения термина «рецепторы» (в физиологии) и термина «биохимические рецепторы» (используемого в фармакологии, биохимии, иммунологии и др.

для обозначения надмолекулярных структур клетки, обеспечивающих взаимодействие с хим. веществами — медиаторами, гормонами и др., и соответствующие реакции клетки).

Сенсорные рецепторы

В относительно просто организованных чувствительных структурах (напр., во внутренних органах, в структурах опорно-двигательного аппарата, в коже) понятие «рецепторы» совпадает с понятиями «рецепторные приборы», «сенсорные органы». В более сложных чувствительных образованиях (напр.

, в органах слуха и зрения, вестибулярном лабиринте и др.) Р. являются лишь частью сенсорного органа (см. Вестибулярный анализатор, Вкус, Зрение, Осязание, Слух). В Р.

энергия раздражителя трансформируется в специфическую активность нервной системы, в сигналы, несущие по афферентным проводникам к нервным центрам информацию о характеристиках действующего агента. В ходе эволюции Р. усложнялись и специализировались, т. к.

чем быстрее и полнее организм способен получить информацию о состоянии и об изменениях окружающей и внутренней среды, тем выше шансы организма выжить в непрерывной борьбе за существование.

У высокоорганизованных животных существует большое разнообразие Р., позволяющих им очень точно воспринимать раздражители самых разных видов (модальностей): механические, химические, температурные, световые, электрические.

В зависимости от этого различают механорецепторы (см.), хеморецепторы (см.), терморецепторы (см.), фоторецепторы (см.); иногда говорят о наличии ноцицепторов, т. е. рецепторов, воспринимающих болевые раздражители (см. Боль).

Нек-рые рецепторы приспособлены для восприятия одного вида раздражения (мономодальные Р.), другие — для восприятия нескольких видов раздражителей (полимодальные Р.). Исторически сохранилось деление Р. на так наз. дистантные Р., служащие для получения информации на нек-ром расстоянии от источника раздражения, и контактные Р.

, воспринимающие стимул при непосредственном соприкосновении с ним. Основная масса Р., особенно высокоспециализированных, воспринимает раздражители из окружающих сред. Это так наз. экстероцепторы (см. Экстероцепция). Важную роль играют Р., сигнализирующие о раздражителях внутренней среды, т. е. интероцепторы (см. Интероцепция). Среди них часто выделяют Р.

опорно-двигательного аппарата — проприоцепторы (см.).

В зависимости от реакции на длительно действующее стационарное воздействие Р. делят на быстро и медленно адаптирующиеся (фазные и тонические Р.). По структурным и функциональным особенностям Р. подразделяются на первично чувствующие и вторично чувствующие Р. Восприятие стимула в первично чувствующих Р.

осуществляется непосредственно (т. е. первично) окончаниями сенсорного нейрона (см. Нервные окончания). У вторично чувствующих Р. между действующим стимулом и сенсорным нейроном располагается специализированная клетка, из к-рой при раздражении выделяется медиатор (см.

), действующий уже непосредственно на окончания сенсорного нейрона. Таким образом, у Р. этого типа внешнее раздражение на сенсорный нейрон опосредованно, вторично. К первично чувствующим Р. у позвоночных животных относятся, напр.

, нервно-мышечные веретена, нервно-сухожильные веретена, а к вторично чувствующим — рецепторы органов слуха, зрения, вкуса, вестибулярного лабиринта и др.

В Р. выделяют три основные части: вспомогательные структуры, напр, капсула у инкапсулированных тканевых Р. (типа телец Пачини, Мейсснера и др.), звукопроводящие структуры органа слуха и др., собственно рецептирующие элементы, содержащие воспринимающий субстрат, и систему генерации локальных электрических потенциалов (так наз. рецепторные, или генераторные, потенциалы). У первично чувствующих Р.

ответы возникают в окончании сенсорного нейрона, а у вторично чувствующих Р.— в рецептирующей клетке. Если локальный электрический потенциал оказывает деполяризующее действие на электровозбудимые структуры окончаний сенсорного нейрона, то происходит генерация импульсов (см. Нервный импульс), несущих в ц. н. с. информацию о событиях, протекающих в Р.; отсюда и термин «генераторный потенциал».

Между силой адекватного для Р. раздражения и частотой импульсации (в среднем диапазоне нагрузок) существует логарифмическая зависимость, что соответствует закону Вебера — Фехнера (см.

Ощущение), Амплитуда рецепторного потенциала, несмотря на постоянство раздражителя, может флюктуировать. Этот факт, а также флюктуация возбудимости структур, генерирующих импульсы, определяют общее колебание возбудимости Р.

во времени, что лежит в основе так наз. функциональной мобильности Р.

Одной из важнейших характеристик Р. является их высокая чувствительность к действию адекватного раздражителя. Чувствительность Р. оценивается величиной абсолютного порога, т. е.

минимальной силой раздражения, способной вызвать возбуждение Р. (см. Возбуждение). Абсолютные пороги высокодифференцированных Р.

(в органах зрения, слуха, обоняния) могут быть крайне низкими, приближаясь к теоретически предельным значениям.

Деятельность Р. находится под нейрогуморальным контролем. Гуморальные факторы способны в известной мере менять возбудимость Р. Эфферентные нервные влияния могут изменять пороги реакции, вызывать как возбуждение, так и торможение Р.

У позвоночных животных эфферентные влияния на высокочувствительные вторично чувствующие Р. носят преимущественно угнетающий характер, а на менее чувствительные первично чувствующие — в основном облегчающий (или возбуждающий) характер.

Патология Р. разнообразна. Причиной могут служить какие-либо нарушения во вспомогательных структурах Р. (напр., в светопроводящих структурах органов зрения, звукопроводящих структурах слуха), в собственно сенсорных элементах (напр., при атрофии обонятельного эпителия, при нарушениях биохим. превращений зрительных пигментов и др.

) и, наконец, в афферентных нервных проводниках (напр., при травмах и заболеваниях нервов). Если патол. изменения вспомогательных структур Р. могут подвергаться лечению (напр., при катарактах, отосклерозах), то повреждение собственно рецептирующих элементов (фоторецепторов, волосковых рецепторов и т. д.

) обычно ведет к необратимым изменениям в деятельности сенсорных органов.

Методы исследования Р. различны; применяют многие морфологические (свето- и электронно-микроскопические), физиологические (различные микроэлектрофизиологические, психофизиологические и др.), фармакологические, биохимические, биофизические, математические и другие методы.

Клеточные рецепторы

В многоклеточном организме передача информации между клетками, происходящая с участием гормонов, нейротрансмиттеров (медиаторов), нейропептидов и других биологически активных веществ, включает этап взаимодействия молекул этих веществ (их называют также лигандами) с соответствующими надмолекулярными структурами, или клеточными рецепторами. Они могут располагаться как внутри клетки (напр., клеточные Р. к стероидным гормонам, легко проникающим внутрь клетки благодаря их растворимости в липидах клеточной мембраны), так и на поверхности клеточной мембраны (клеточные Р. к белкам, пептидам, нейротрансмиттерам). Как внутриклеточные, так и мембранные клеточные Р. содержат центр связывания, обеспечивающий специфическое связывание лиганда с клеточными Р. После связывания, напр., молекулы стероидного гормона с цитоплазматическим Р. и образования комплекса гормон — клеточный Р. этот комплекс проникает внутрь клеточного ядра, где связывается с соответствующим акцептором, вслед за чем молекула гормона отделяется от комплекса и выходит в цитоплазму, при этом одновременно активируется генетический аппарат клетки (см.). Конечным итогом этой активации является резкое усиление синтеза ряда специфических и неспецифических белков клетки, что представляет собой ответ клетки-мишени на действие гормона.

Процессы, происходящие при связывании молекулы лиганда с клеточным Р., локализованным на клеточной мембране (см. Мембраны биологические), состоят из ряда этапов, протекающих с большой скоростью. Происходящее при этом изменение свойств фосфолипидного матрикса, окружающего клеточный Р.

, обеспечивает передачу сигнала от центра связывания лиганда (через ряд промежуточных звеньев) на аденилат-циклазный центр и его активацию. Циклическая АМФ (см. Аденозинфосфорные кислоты) является своеобразным вторым внутриклеточным переносчиком информации, определяющим ответ клетки на действие лиганда. Т. о.

, происходит активация соответствующих протеинкиназ, изменение проницаемости клеточной мембраны для ряда ионов, усиление экспрессии генетической информации. Важным открытием явилось обнаружение в ц. н. с. клеточных Р. к ряду нейрональных пептидов, напр, к группам пептидов, названных эндорфинами и энкефалинами, а также клеточных Р.

ко многим психотропным лекарственным препаратам (имипрамину, галоперидолу, диазепаму и др.). Взаимодействие указанных выше лигандов с клеточными Р. изменяет способность нервных клеток отвечать на действие нейро-трансмиттеров, т. е. оказывает на их активность модулирующее действие. Напр.

, связывание препаратов бензодиазепинового ряда с бензодиазе-пиновыми клеточными Р. усиливает ответ ГАМК-ергических нейронов на действие гамма-аминомасляной к-ты (ГАМК), влияя в то же время на связывание ГАМК соответствующими клеточными Р. В связи с обнаружением в ц. н. с.

эндогенных лигандов, конкурирующих с морфином за места связывания и обладающих морфиноподобным действием, проводится поиск эндогенных соединений типа эндогенного диазепама, эндогенного галоперидола и др., что может иметь в случае их обнаружения большое значение для клин, практики.

Нарушения механизмов рецепции играют важную роль в развитии ряда заболеваний человека, напр, нек-рых видов сахарного диабета, гиперхоли-стеринемии и др. Наряду с рассмотренными выше видами Р. на поверхности В- и Т-лимфоцитов выявлены мембранные клеточные Р., играющие важную роль в работе иммунной системы, а также клеточные Р. к ряду вирусов.

Библиография: Глебов Р. И. и Крыжановский Г. Н. Функциональная биохимия синапсов, М., 1978; Гранит Р. Электрофизиологическое исследование рецепции, пер. с англ., М., 1957; Розен В. Б. и Смирнов А. Н. Рецепторы и стероидные гормоны, М., 1981, библиогр.; Тамар Г. Основы сенсорной физиологии, пер. с англ., М., 1976; Физиология сенсорных систем, под ред. А. С. Батуева, с.

34, Л., 1976; Cell membrane receptors for drugs and hormones, a multidisciplinary approach, ed. by R. W. Straub a. L. Bolis, N. Y., 1978; Cell! membrane receptors for viruses, antigens, and antibodies, polypeptide hormones, and small molecules, ed. by R. F. Beers a. E. G. Bassett, N. Y., 1976; The receptors, a comprehensive treatise, ed. by R. D. O’Brien, v. 1, N. Y.— L., 1979.

О. Б. Ильинский; P. P. Лидеман (клеточные рецепторы).

Источник: https://xn--90aw5c.xn--c1avg/index.php/%D0%A0%D0%95%D0%A6%D0%95%D0%9F%D0%A2%D0%9E%D0%A0%D0%AB

Классификация рецепторов. Вкусовые, зрительные, болевые рецепторы

Типы рецепторов

Что такое анатомия? Это наука, занимающаяся изучением особенностей тела человека. Классификация рецепторов и раздражителей также относится к вопросам этой дисциплины. Как же первые связаны со вторыми? Все очень просто.

На тело постоянно воздействует большое количество разнообразных раздражителей, наши рецепторы откликаются на них избирательно, все зависит от их местоположения и строения.

Нервные образования также называют сенсорной системой, передающей ощущения от органов чувств центральной нервной системе.

Существуют различные виды рецепторов, но для начала необходимо выделить органы чувств:

  • Глаза.
  • Уши.
  • Органы чувства гравитации.
  • Язык.
  • Нос.
  • Кожа.

Зачем нужны рецепторы

Все нуждаются в такой информации, которую дает окружающая среда.

В первую очередь это необходимо для того, чтобы обеспечить себя пищей и особью противоположного пола, оградить себя от опасности и для ориентации в пространстве.

Все это обеспечивают эти нервные образования. Классификация рецепторов – это, безусловно, важный вопрос, но перед этим разберем разновидности сигналов, действующих на них.

Раздражители

Их классифицируют по следующим особенностям:

  • Модальность.
  • Адекватность.

Что касается первого пункта, то внешние раздражители различают тепловые, электрические, механические, осмотические, химические, световые и многие другие. Они передаются непосредственно с помощью энергий разного вида, например, тепловые, как нетрудно догадаться, передаются с помощью температуры и так далее.

Помимо всего этого, они делятся на адекватные и неадекватные раздражители, об этом стоит поговорить немного подробнее.

Адекватность

Важно отметить невероятно умную мысль Фридриха Энгельса, который считал, что органы чувств – это главное орудие головного мозга.

Он, безусловно, прав, ведь все, что мы видим, чувствуем и слышим – это заслуга органов чувств и рецепторов, а раздражение последних – это самое начальное звено познания внешнего мира.

Например, работу вкусовых рецепторов мы ощущаем, когда чувствуем вкус еды (горький, соленый, кислый или сладкий), раздражение рецепторов глаза передают нам ощущение света или его отсутствия.

Раздражитель, к которому рецептор приспособлен, называют адекватным. Хорошим примером послужат рецепторы языка. При попадании в рот какого-либо вещества мы ощущаем вкус, например горький, соленый, сладкий или кислый. Сетчатка глаза улавливает световые волны, так мы понимаем, что горит свет.

Свойства рецепторов довольно разнообразны, но, говоря про неадекватность раздражителей, можно выделить следующее: при воздействии энергии, к которой рецептор не приспособлен, вызывается незначительная часть ощущений, таких, как при раздражении адекватных. Примером могут служить поражение током или химическое раздражение.

Если сетчатка глаза получила механическое раздражение, то будет ощущение света, такое явление принято называть «фосфеном». Или при получении электрического удара в ухо мы можем услышать шум, а вот механическое поражение может вызвать вкусовые ощущения.

Классификация рецепторов: физиология

С вопросом раздражителей мы разобрались, теперь у нас остался не менее важный вопрос. Для понимания механизма действия классификация рецепторов имеет важное значение. Для начала разберем вопрос принципа строения сенсорных систем человека, выделим основные функции, поговорим об адаптации. Прежде всего классификация рецепторов по виду включает следующие:

  • Рецепторы боли.
  • Зрительные.
  • Рецепторы, определяющие положение тела и его частей в пространстве.
  • Слуховые.
  • Осязательные.
  • Обонятельные.
  • Вкусовые.

Это не единственная классификация рецепторов, помимо этих видов, выделяют разделение и по другим качествам. Например, по локализации (внешние и внутренние), по характеру контакта (дистантные и контактные), первичные и вторичные.

Внешними являются рецепторы, отвечающие за слух, зрение, обоняние, осязание и вкус. Внутренние же отвечают за опорно-двигательный аппарат и состояние внутренних органов.

Вторым пунктом мы выделили следующие виды рецепторов: дистантные, то есть те, которые улавливают сигнал на дистанции (зрение или слух), и контактные, которым необходимо непосредственно соприкосновение, например, вкус.

Что касается разделения на первичные и вторичные, то в первую группу входят те, которые преобразуют раздражение в импульс в первом нейроне (пример: обоняние), а во вторую – имеющие рецепторную клетку (пример: вкус или зрение).

Строение

Если рассматривать строение рецепторов человека, то возможно выделить основные принципы, такие как:

  1. Множество слоев клеток, то есть: нервный рецептор связан с первым слоем клеток, а последний слой является проводником к коре головного мозга, а точнее к его нейронам моторных областей. Эта особенность позволяет с очень большой скоростью обрабатывать поступающие сигналы, обрабатываемые уже на первом слое системы.
  2. Для точности и надежности передачи нервных сигналов предусмотрена многоканальность. Как было описано в прошлом пункте, сенсорная система имеет множество слоев, а они в свою очередь обладают от нескольких десятков тысяч до нескольких миллионов клеток, передающих информацию на следующий слой. Кроме надежности эта особенность обеспечивает и детальный анализ сигнала.
  3. Образование воронок. Для примера рассмотрим рецепторы сетчатки глаза. В самой сетчатке насчитывается сто тридцать миллионов рецепторов, а вот в слое ганглиозных клеток их уже миллион триста тысяч, что в сто раз меньше. Мы можем утверждать, что наблюдается суживающаяся воронка. В чем ее смысл? Вся ненужная информация отсеивается, но на следующих этапах формируется расширяющаяся воронка, которая обеспечивает расширенный анализ сигнала.
  4. Дифференциация по вертикали и горизонтали. Первая способствует образованию отделов, состоящих из слоев и выполняющих какую-либо одну функцию. Вторая нужна для того, чтобы делить клетки на классы в пределах одного слоя. Например, возьмем зрение, там работает сразу два канала, которые и свою работу осуществляют по-разному.

Функции рецепторов

Анализатором называют некоторую часть нашей нервной системы, которая состоит из нескольких элементов: воспринимающего, нервных путей и частей мозга.

Всего можно выделить три составляющих:

  1. Рецепторы.
  2. Проводники.
  3. Отдел мозга.

Их функции также индивидуальны, то есть первые схватывают сигналы, вторые провожают их в мозг, а третий анализирует информацию. Работает вся эта система синхронно для обеспечения прежде всего безопасности человеку и другим живым существам.

Таблица

Предлагаем выделить основные функции работы всей сенсорной системы, для этого приведем таблицу.

Функции

Пояснение

Обнаружение

Со временем сенсорная система эволюционирует, на данный момент рецепторы способны улавливать очень большое количество сигналов, как адекватных, так и неадекватных. Например, глаз человека способен улавливать свет, а еще различает удар как механический, так и электрический.

Различение поступающих сигналов

Передача и преобразование

Все рецепторы – это своего рода преобразователи, так как они из одной энергии получают совсем другую (нервное раздражение). Они ни в коем случае не должны искажать сигнал.

Кодирование

Об этой особенности (функции) написано выше. Кодирование сигнала в форму нервного раздражения.

Детектирование

Рецептор, помимо того, что улавливает сигнал, должен выделить и его признак.

Обеспечение опознания образа

Адаптирование

Взаимодействие

Именно эта важная функция формирует схему мира, для того, чтобы приспособиться, нам необходимо соотнести нас самих с ней. Ни один организм не может существовать без восприятия информации, эта функция обеспечивает борьбу за существование.

Свойства рецепторов

Разбираемся дальше. Теперь необходимо выделить основные свойства рецепторов. Первым мы назовем избирательность.

Все дело в том, что большинство рецепторов человека направлено на прием только одного вида сигналов, например, света или звука, к таким видам сигналов они очень восприимчивы, чувствительность необычайно высока.

Рецептор возбуждается только в том случае, если улавливает минимальный сигнал, для этого введено понятие «порог возбуждения».

Второе свойство непосредственно связано с первым, а звучит оно как низкая величина порога для адекватных раздражителей.

Для примера возьмем зрение, которое улавливает такой минимальный сигнал, которого нужно для нагревания миллилитра воды на один градус по Цельсию целых шестьдесят тысяч лет.

Таким образом, реакция возможна и на неадекватные раздражители, такие как электрические и механические, только для таких видов, соответственно, и порог намного выше. Кроме всего сказанного, различают два вида порогов:

Первые определяют наименьшую величину, ощущаемую организмом, а вторые позволяют нам отличать степени освещенности, оттенки различных цветов и так далее, то есть разницу между двумя раздражителями.

Еще одно очень важное свойство всех живых организмов на земле – это адаптация. Так и наши сенсорные системы адаптируются к внешним условиям.

Адаптация

Этот процесс охватывает не только сами рецепторы сенсорных систем, но и все его слои. Как это происходит? Все просто, порог возбуждения, о котором мы говорили ранее, это не постоянная величина.

С помощью адаптации они изменяются, становятся менее чувствительными к постоянным раздражителем. У вас есть дома часы? Вы не обращаете внимания на их вечное тиканье, потому что ваши рецепторы (в данном случае слуховые) стали менее чувствительными к данному раздражителю.

И к другим длительным и монотонным раздражениям у нас выработан иммунитет.

Адаптационные процессы охватывают не только рецепторы, но и все звенья сенсорных систем. Адаптация периферических элементов проявляется в том, что пороги возбуждения рецепторов не являются постоянной величиной.

Путем повышения порогов возбуждения, т. е. снижения чувствительности рецепторов, происходит приспособление к длительным монотонным раздражениям.

Например, человек не ощущает постоянного давления на кожу своей одежды, не замечает непрерывного тиканья часов.

Фазные и тонические рецепторы

Отметим, что все рецепторы делятся на:

  • быстро адаптирующиеся,
  • медленно адаптирующиеся.

Причем первые, их еще называют фазные, дают реакцию на раздражители только в самом начале и в конце его действия, а вот вторые (тонические) посылают непрерывные сигналы в нашу центральную нервную систему на довольно длительном промежутке времени.

Еще необходимо знать, что адаптация может сопровождаться как повышением, так и понижением возбудимости рецептора.

Для примера представим, что вы переходите из светлого помещения в темное, в таком случае происходит повышение возбудимости, сначала вы видите освещенные предметы, а только потом более темные.

Обратный случай, если из темного помещения переходить в светлое, всем известно выражение «свет режет глаза», мы щуримся из-за того, что наши рецепторы перестраиваются, а именно уменьшается возбудимость наших фоторецепторов, сейчас происходит так называемая темновая адаптация.

Регуляция

Важно знать, что у человека нервная система способна к регуляции, все зависит от потребностей на данный момент времени. Если после состояния покоя человек резко начинает физическую работу, то чувствительность рецепторов (двигательного аппарата) резко возрастает.

Зачем же это нужно? Чтобы облегчить восприятие информации, связанной с состоянием опорно-двигательного аппарата. Кроме того, процесс адаптации способен помимо рецепторов затрагивать и другие образования.

К примеру, возьмем слух, если идет адаптация, то изменяется и подвижность таких частей, как:

  • молоточек,
  • наковальня,
  • стремечко.

То есть слуховых косточек среднего уха.

Выводы

Подводя итог всего вышесказанного, мы еще раз выделим основные функции наших сенсорных систем: обнаружение сигнала, различение, преобразование одного вида энергии в другую (нервный импульс), передача преобразованного сигнала в другие слои сенсорных систем, опознание образов.

Основные свойства заключаются в следующих пунктах: избирательность, низкий порог реагирования для адекватных раздражителей, способность подстраиваться под окружающую среду.

Также мы рассмотрели такие важные пункты, как строение и классификация сенсорных систем, классификация по разным признакам раздражителей, адаптация.

Источник: https://FB.ru/article/283404/klassifikatsiya-retseptorov-vkusovyie-zritelnyie-bolevyie-retseptoryi

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.