Возрастающая роль различных ферментов

Ферменты – биологические катализаторы. Значение ферментов. урок. Биология 10 Класс

Возрастающая роль различных ферментов

Ферменты – это белковые молекулы, которые синтезируются живыми клетками. В каждой клетке насчитывается более сотни различных ферментов. Роль ферментов в клетке колоссальна. С их помощью химические реакции идут с высокой скоростью, при температуре, подходящей для данного организма.

То есть ферменты – это биологические катализаторы, которые облегчают протекание химической реакции и за счет этого увеличивают её скорость. Как катализаторы они не изменяют направление реакции и не расходуются в процессе реакции.

Ферментыбиокатализаторы – вещества, увеличивающие скорость химических реакций.

Без ферментов все реакции в живых организмах протекали бы очень медленно и не могли бы поддерживать его жизнеспособность.

Наглядный пример работы ферментов – сладковатый вкус во рту, который появляется при пережевывании продуктов, содержащих крахмал (например, риса или картофеля).

Появление сладкого вкуса связано с работой фермента амилазы, которая присутствует в слюне и расщепляет крахмал (рис. 1).

Крахмал является полисахаридом, и сам по себе безвкусный, но продукты расщепления крахмала (моносахариды) с меньшей молекулярной массой (декстрины, мальтоза, глюкоза) сладкие на вкус.

Рис. 1. Механизм действия амилазы

Все ферменты – глобулярные белки с третичной или четвертичной структурой. Ферменты могут быть простыми, состоящими только из белка, и сложными.

Сложные ферменты состоят из белковой и небелковой части (белковая часть – апофермент, а добавочная небелковая – кофермент). В качестве кофермента могут выступать витамины – E, K, B групп (рис. 2).

Рис. 2. Классификация ферментов по их составу

Фермент взаимодействует с субстратом, не всей молекулой, а отдельной её частью – т. н. активным центром.

Фермент взаимодействует с субстратом и образует короткоживущий фермент-субстратный комплекс. По завершении реакции, фермент-субстратный комплекс распадается на продукты и фермент. Фермент в итоге не изменяется: по окончании реакции он остается таким же, каким был до неё, и может теперь взаимодействовать с новой молекулой субстрата (рис. 3).

Рис. 3. Механизм взаимодействия фермента и субстрата

На рисунке 3 представлен механизм работы фермента, в частности, образования пептидной связи между молекулами аминокислот. Две аминокислоты взаимодействуют между собой в активном центре фермента, между ними образуется пептидная связь. Новое вещество (дипептид) покидает активный центр фермента, поскольку оно по своей структуре не соответствует этому центру.

Особенностью ферментов является то, что они обладают высокой специфичностью, т. е. могут ускорять только одну реакцию или реакции одного типа.

В 1890 году Э. Г. Фишер предположил, что эта специфичность обусловлена особой формой молекулы фермента, которая точно соответствует форме молекулы субстрата.

Эта гипотеза получила название «ключа и замка», где ключ сравнивается с субстратом, а замок – с ферментом. Гипотеза гласит: субстрат подходит к ферменту, как ключ подходит к замку.

Избирательность действия фермента связана со строением его активного центра (рис. 4).

Рис. 4. Гипотеза взаимодействия фермента и субстрата по принципу ключ-замок Э. Г. Фишера

В первую очередь, на активность фермента влияет температура. С повышением температуры скорость химической реакции возрастает. Увеличивается скорость молекул, у них появляется больше шансов столкнуться друг с другом. Следовательно, увеличивается вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую активность фермента – оптимальная.

За пределами оптимальной температуры скорость реакции снижается вследствие денатурации белков. Когда температура снижается, скорость химической реакции тоже падает. В тот момент, когда температура достигает точки замерзания, фермент инактивируется, но при этом не денатурирует (см. видео).

В наше время для длительного хранения продуктов широко используют способ быстрого замораживания. Оно останавливает рост и развитие микроорганизмов, а также инактивирует ферменты, находящиеся внутри микроорганизмов, и предотвращает разложение продуктов питания.

Кроме этого, активность ферментов зависит ещё от pH среды (кислотности – то есть показателя концентрации ионов водорода).

В большинстве случаев, ферменты работают при нейтральном pH, т. е. при pH около 7. Но существуют ферменты, которые работают либо в кислой и сильнокислой, либо в щелочной и сильнощелочной среде.

Например, один из таких ферментов – пепсин, он находится у нас с вами в желудке, работает в сильнокислой среде и расщепляет белки.

Поскольку в желудке среда достаточно кислая, 1,5 – 2 pH, то этот фермент работает при сильнокислой среде.

Ферменты подвержены действию активаторов и ингибиторов. Некоторые ионы, например, ионы металлов Mg, Mn, Zn активируют ферменты. Другие же ионы (к ним относятся ионы тяжелых металлов, а именно Hg, Pb, Cd), наоборот, подавляют активность ферментов, денатурируют их белки.

В 1961 году была предложена систематическая классификация ферментов на 6 групп. Но названия ферментов оказались очень длинными и трудными в произношении, поэтому ферменты принято сейчас именовать с помощью рабочих названий. Рабочее название состоит из названия субстрата, на который действует фермент, и окончания «аза» (рис. 5).

Например, если вещество — лактоза, то есть молочный сахар, то лактаза – это фермент который его преобразует. Если сахароза (обыкновенный сахар), то фермент, который его расщепляет, – сахараза.

Соответственно, ферменты, которые расщепляют протеины, носят название протеиназы.

Ферменты применяются практически во всех областях человеческой деятельности, и такое широкое применение, в первую очередь, связано с тем, что они сохраняют свои уникальные свойства вне живых клеток.

Ферменты групп амилаз, протеаз и липаз применяются в медицине. Они расщепляют крахмал, белки и жиры. Все эти ферменты, как правило, входят в состав комбинированных препаратов, таких как фестал и панзинорм, и используются, в первую очередь, для лечения заболеваний желудочно-кишечного тракта (рис. 6).

Ферменты применяют для растворения тромбов в кровеносных сосудах, при лечении гнойных ран.

Особое место занимает энзимотерапия при лечении онкологических заболеваний.

Такие ферменты как амилаза расщепляют крахмал и поэтому широко используются в пищевой промышленности. В пищевой промышленности используется протеиназа, расщепляющая белки, и липазы, расщепляющие жиры. Ферменты амилазы используются в хлебопечении, виноделии и пивоварении (см. видео).

Протеазы используются для смягчения мяса и при изготовлении готовых каш.

Липазы используются в производстве сыра.

Ферменты широко используются в косметической промышленности, входят в состав кремов, некоторые ферменты входят в состав стиральных порошков.

Энзимопатология

Энзимопатология – область энзимологии, которая изучает связь между болезнью и недостаточным синтезом, или отсутствием синтеза какого-либо фермента.

Например, причиной наследственного заболевания – фенилкетонурии, которое сопровождается расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение фенилаланина в тирозин.

В результате в организме накапливаются токсические вещества. Новорожденный ребенок выглядит здоровым, а первые симптомы фенилкетонурии проявляются в возрасте от двух до шести месяцев. Это выраженная вялость, отсутствие интереса к окружающему миру, повышенная раздражительность, а также беспокойство и рвота.

Во втором полугодии жизни у ребенка выражено отставание в психическом развитии. Менее чем в 10% случаев – это слабая степень олигофрении, а у 60% развивается идиотия.

При своевременной диагностике патологических изменений можно избежать, если с момента рождения до наступления полового созревания ограничить поступление фенилаланина с пищей.

Стиральные порошки с ферментами

На этом уроке мы с вами выяснили, что ферменты используются в различных областях человеческой деятельности.

Они широко используются в пищевой промышленности, в медицине, в косметике и бытовой химии.

Например, в стиральные порошки добавляют амилазу, которая расщепляет крахмал, протеазы, расщепляющие белки или белковые загрязнения, и липазы, очищающие ткани от жира и масла.

Как правило, в состав стирального порошка входит комбинация этих ферментов, то есть ферментные препараты усиливают действие друг друга.

Сегодня наиболее изученными ферментами являются протеазы и амилазы. Липазы не всегда стабильны по качеству. Их разработкой занимаются только 10 лет, а амилаза и протеаза существуют на рынке уже более полувека.

Сегодня эти две категории ферментов очень хорошо изучены и дают прекрасные результаты, чего пока что нельзя сказать о липазах.

Липазы полностью справляются с загрязнениями только после двух-трех стирок, а протеазы и амилазы – за одну.

Ученые подсчитали, что добавление ферментов в стиральные порошки на 30-35% увеличивает моющую способность данного порошка.

Ферменты были открыты при изучении процессов брожения. Представления о том, что химические процессы внутри живых организмов протекают под действием каких-то особенных веществ, возникло более 200 лет назад. В XIX века Луи Пастер (рис.

7) доказал, что сбраживание дрожжами сахара в спирт катализируется веществами белковой природы. Пастер ошибочно считал, что ферменты неотделимы от живых клеток.

Другой ученый, Эдуард Бухнер, доказал, что в водных экстрактах живых клеток находится набор ферментов, катализирующих превращение сахара в спирт. Именно его открытие дало начало новой науке – энзимологии.

Успехи энзимологии во второй половине XX века привели к тому, что в настоящее время выделено и очищено более 2000 ферментов, которые используются в различных отраслях человеческой деятельности.

Домашнее задание

1. Что такое фермент?

2. Как ферменты работают?

3. Как ферменты получают имена? Назовите известные вам группы ферментов.

4. Назовите ученых, которые внесли особый вклад в дело изучения ферментов.

5. К какому уровню организации можно отнести ферментативный катализ?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал Biochemistry.ru (Источник).

2. Биология (Источник).

3. Интернет-портал Chem.msu.su (Источник).

4. (Источник).

5. Вкус жизни (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

4. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. – 5-е изд., стереотип. – Дрофа, 2010. – 388 с.

5. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник: https://interneturok.ru/lesson/biology/10-klass/bosnovy-citologii-b/fermenty-biologicheskie-katalizatory-znachenie-fermentov

Функция ферментов. Роль ферментов в организме

Возрастающая роль различных ферментов

Ферменты – это глобулярные белки, которые помогают протекать всем клеточным процессам. Как и все катализаторы, они не могут повернуть реакцию вспять, а служат для ее ускорения.

Локализации ферментов в клетке

Внутри клетки индивидуальные ферменты, как правило, содержатся и действуют в строго определенных органеллах. Локализация ферментов непосредственно связана с той функцией, которую обычно выполняет данный участок клетки.

Почти все ферменты гликолиза располагаются в цитоплазме. Ферменты цикла трикарбоновых кислот – в матриксе митохондрий. Активные вещества гидролиза содержатся в лизосомах.

Отдельные ткани и органы животных и растений отличаются не только по набору ферментов, но и по их активности. Такую особенность тканей используют в клинике при диагностике некоторых заболеваний.

Существуют также возрастные особенности в активности и наборе ферментов в тканях. Они наиболее четко заметны в период эмбрионального развития при дифференцировке тканей.

Номенклатура ферментов

Существует несколько систем названий, каждая из которых учитывает свойства ферментов в разной степени.

  • Тривиальная. Названия веществ даются по случайным признакам. Например, пепсин (pepsis – “пищеварение”, греч.) и трипсин (tripsis – “разжижаю”, греч.)
  • Рациональная. Название фермента складывается из субстрата и окончания «-аза». Например, амилаза ускоряет гидролиз крахмала (amylo – “крахмал”, греч.).
  • Московская. Она была принята в 1961 году международной комиссией по номенклатуре ферментов на V Международном биохимическом конгрессе. Название вещества составляют из субстрата и реакции, которая катализируется (ускоряется) ферментом. Если функция ферментов заключается в переносе группы атомов от одной молекулы (субстрата) к другой (акцептору), название катализатора включает в себя и химическое название акцептора. Например, в реакции переноса аминогруппы с аланина на 2-оксиглутаровую кислоту участвует фермент аланин: 2-оксоглутаратаминотрансфераза. Название отражает:
    • субстрат – аланин;
    • акцептор – 2-оксоглутаровая кислота;
    • в реакции переносится аминогруппа.

Международной комиссией был составлен список всех известных ферментов, который постоянно дополняется. Это связано с открытием новых веществ.

Делить ферменты на группы можно двумя способами. Первый предлагает два класса этих веществ:

  • простые – состоят только из белка;
  • сложные – содержат белковую часть (апофермент) и небелковую, называемую коферментом.

В небелковую часть сложного фермента могут входить витамины. Взаимодействие с другими веществами происходит посредством активного центра. Целиком молекула фермента не принимает участия в процессе.

Свойства ферментов, как и других белков, определяются их строением. В зависимости от него катализаторы ускоряют только свои реакции.

Второй способ классификации делит вещества по тому, какую функцию выполняют ферменты. В результате получается шесть классов:

  • оксидоредуктазы;
  • трансферазы;
  • гидролазы;
  • изомеразы;
  • лиазы;
  • лигазы.

Это общепринятые группы, отличаются они не только по видам реакций, которые регулируют состоящие в них ферменты. У веществ различных групп отличается строение. И функции ферментов в клетке, следовательно, не могут быть одинаковыми.

Оксидоредуктазы – окислительно-восстановительные

Основная функция ферментов первой группы – ускорение окислительно-восстановительных реакций. Характерная особенность: способность образовывать цепи окислительных ферментов, в которых осуществляется перенос электронов или атомов водорода от самого первого субстрата к конечному акцептору. Эти вещества разделяют по принципу работы или по месту работы в реакции.

  1. Аэробные дегидрогеназы (оксидазы) ускоряют перенос электронов или протонов непосредственно на кислородные атомы. Анаэробные же совершают те же действия, но в реакциях, которые протекают без передачи электронов или атомов водорода на кислородные атомы.
  2. Первичные дегидрогеназы катализируют процесс отнятия атомов водорода от окисляемого вещества (первичного субстрата). Вторичные – ускоряют снятие атомов водорода со вторичного субстрата, получены они были при помощи первичной дегидрогеназы.

Другая особенность: будучи двукомпонентными катализаторами с очень ограниченным набором коферментов (активных групп), они могут ускорять множество самых разнообразных реакций окисления-восстановления. Это достигается большим числом вариантов: один и тот же кофермент может присоединиться к разным апоферментам. В каждом случае получается особенная оксидоредуктаза со своими свойствами.

Существует еще одна функция ферментов этой группы, о которой нельзя не упомянуть — они ускоряют протекание химических процессов, связанных с выделением энергии. Такие реакции называются экзотермическими.

Трансферазы – переносчики

Эти ферменты выполняют функцию ускорения реакций переноса молекулярных остатков и функциональных групп. Например, фосфофруктокиназа.

Выделяют восемь групп катализаторов, исходя из переносимой группы. Рассмотрим только некоторые из них.

  1. Фосфотрансферазы – помогают переносить остатки фосфорной кислоты. Они делятся на подклассы в соответствии с пунктом назначения (спиртовые, карбоксильные и прочие).
  2. Аминотрансферазы – ускоряют реакции переаминирования аминокислот.
  3. Гликозилтрансферазы – переносят гликозильные остатки из молекул фосфорных эфиров к молекулам моно- и полисахаридов. Обеспечивают реакции распада и синтеза олиго- или полисахаридов в организмах растений и животных. Например, они участвуют в реакции распада сахарозы.
  4. Ацилтрансферазы переносят остатки карбоновых кислот на амины, спирты и аминокислоты. Ацил-коэнзим-А является универсальным источником ацильных групп. Его можно рассматривать как активную группу ацилтрансфераз. Чаще всего переносится ацил уксусной кислоты.

Гидролазы – расщепляют с участием воды

В этой группе ферменты выполняют функцию катализаторов для реакций расщепления (реже синтеза) органических соединений, в которых участвует вода. Вещества этой группы содержатся в клетках и в пищеварительном соке. Молекулы катализаторов в ЖКТ состоят из одного компонента.

Местом локализации этих ферментов являются лизосомы. Они выполняют защитные функции ферментов в клетке: расщепляют чужеродные вещества, прошедшие через мембрану. Они также уничтожают те вещества, которые больше не нужны клетке, за что лизосомы были прозваны санитарами.

Другое их “прозвище” – клеточные самоубийцы, так как они являются главным инструментом для аутолиза клетки. Если появилась инфекция, начались воспалительные процессы, мембрана лизосом становится проницаемой и гидролазы выходят в цитоплазму, разрушая все на своем пути и уничтожая клетку.

Разделяют несколько видов катализаторов из этой группы:

  • эстеразы – отвечают за гидролиз сложных эфиров спиртов;
  • гликозидазы – ускоряют гидролиз гликозидов, в зависимости от того, на какой изомер они действуют, выделяют α- или β-гликозидазы;
  • пептид-гидролазы – ответственны за гидролиз пептидных связей в белках, а при определенных условиях и за их синтез, но этот способ синтеза белка не используется в живой клетке;
  • амидазы – отвечают за гидролиз амидов кислот, например, уреаза катализирует распад мочевины на аммиак и воду.

Изомеразы – преобразование молекулы

Эти вещества ускоряют изменения в пределах одной молекулы. Они могут быть геометрические или структурные. Это может происходить разными способами:

  • перенос атомов водорода;
  • перемещение фосфатной группы;
  • изменение расположения атомных группировок в пространстве;
  • перемещение двойной связи.

Изомеризации могут быть подвержены органические кислоты, углеводы или аминокислоты. Изомеразы могут превращать альдегиды в кетоны и, наоборот, цис-форму перестроить в транс-форму и обратно. Чтобы лучше понять, какую функцию выполняют ферменты этой группы, необходимо знать различия изомеров.

Лиазы рвут связи

Эти ферменты ускоряют негидролитический распад органических соединений по связям:

  • углерод-углерод;
  • фосфор-кислород;
  • углерод-сера;
  • углерод-азот;
  • углерод-кислород.

При этом выделяются такие простейшие продукты, как углекислый газ, вода, аммиак, и замыкаются двойные связи. Немногие из этих реакций могут пойти в обратную сторону, соответствующие ферменты в подходящих для этого условиях катализируют процессы не только распада, но и синтеза.

Классификация лиаз происходит по типу связи, которую они разрывают. Они являются сложными ферментами.

Лигазы сшивают

функция ферментов этой группы – ускорение реакций синтеза. Их особенность – сопряженность создания с распадом веществ, которые способны дать энергию для осуществления биосинтетического процесса. Существует шесть подклассов по типу образуемой связи. Пять из них идентичны подгруппам лиаз, а шестая отвечает за создание связи “азот-металл”.

Некоторые лигазы принимают участие в особенно важных процессах клетки. Например, ДНК-лигаза участвует в репликации дезоксирибонуклеиновой кислоты. Она сшивает одноцепочечные разрывы, создавая новые фосфодиэфирные связи. Именно она соединяет фрагменты Оказаки.

Этот же фермент активно используется в генной инженерии. Он позволяет ученым сшивать молекулы ДНК из необходимых им кусочков, создавая уникальные цепочки дезоксирибонуклеиновой кислоты.

В них можно заложить любую информацию, создав таким образом фабрику по изготовлению необходимых белков. Например, можно вшить в ДНК бактерии кусочек, отвечающий за синтез инсулина.

И когда клетка будет транслировать собственные белки, она заодно наделает и полезное вещество, необходимое в медицинских целях. Его остается только лишь очистить, и оно поможет множеству больных людей.

Огромная роль ферментов в организме

Они могут увеличить скорость реакции более чем в десять раз. Это просто необходимо для нормальной жизнедеятельности клетки. А ферменты участвуют в каждой реакции. Поэтому функции ферментов в организме разнообразны, как и все протекающие процессы. А нарушение работы этих катализаторов приводит к тяжелым последствиям.

Широко применяются ферменты в пищевой, легкой промышленности, медицине: используются для изготовления сыров, колбас, консервов, входят в состав стиральных порошков. Также их используют в изготовлении фотоматериалов.

Источник: https://FB.ru/article/179241/funktsiya-fermentov-rol-fermentov-v-organizme

Ферменты – биологические катализаторы. Значение ферментов

Возрастающая роль различных ферментов

Фер­мен­ты – это бел­ко­вые мо­ле­ку­лы, ко­то­рые син­те­зи­ру­ют­ся жи­вы­ми клет­ка­ми. В каж­дой клет­ке на­счи­ты­ва­ет­ся более сотни раз­лич­ных фер­мен­тов. Роль фер­мен­тов в клет­ке ко­лос­саль­на. С их по­мо­щью хи­ми­че­ские ре­ак­ции идут с вы­со­кой ско­ро­стью, при тем­пе­ра­ту­ре, под­хо­дя­щей для дан­но­го ор­га­низ­ма.

То есть фер­мен­ты – это био­ло­ги­че­ские ка­та­ли­за­то­ры, ко­то­рые об­лег­ча­ют про­те­ка­ние хи­ми­че­ской ре­ак­ции и за счет этого уве­ли­чи­ва­ют её ско­рость. Как ка­та­ли­за­то­ры они не из­ме­ня­ют на­прав­ле­ние ре­ак­ции и не рас­хо­ду­ют­ся в про­цес­се ре­ак­ции.

Фер­мен­ты-био­ка­та­ли­за­то­ры – ве­ще­ства, уве­ли­чи­ва­ю­щие ско­рость хи­ми­че­ских ре­ак­ций.

Без фер­мен­тов все ре­ак­ции в живых ор­га­низ­мах про­те­ка­ли бы очень мед­лен­но и не могли бы под­дер­жи­вать его жиз­не­спо­соб­ность.

На­гляд­ный при­мер ра­бо­ты фер­мен­тов – слад­ко­ва­тый вкус во рту, ко­то­рый по­яв­ля­ет­ся при пе­ре­же­вы­ва­нии про­дук­тов, со­дер­жа­щих крах­мал (на­при­мер, риса или кар­то­фе­ля).

По­яв­ле­ние слад­ко­го вкуса свя­за­но с ра­бо­той фер­мен­та ами­ла­зы, ко­то­рая при­сут­ству­ет в слюне и рас­щеп­ля­ет крах­мал (рис. 1).

Крах­мал яв­ля­ет­ся по­ли­са­ха­ри­дом, и сам по себе без­вкус­ный, но про­дук­ты рас­щеп­ле­ния крах­ма­ла (мо­но­са­ха­ри­ды) с мень­шей мо­ле­ку­ляр­ной мас­сой (декс­три­ны, маль­то­за, глю­ко­за) слад­кие на вкус.

Рис. 1. Ме­ха­низм дей­ствия ами­ла­зы

Все фер­мен­ты – гло­бу­ляр­ные белки с тре­тич­ной или чет­вер­тич­ной струк­ту­рой. Фер­мен­ты могут быть про­сты­ми, со­сто­я­щи­ми толь­ко из белка, и слож­ны­ми.

Слож­ные фер­мен­ты со­сто­ят из бел­ко­вой и небел­ко­вой части (бел­ко­вая часть – апо­фер­мент, а до­ба­воч­ная небел­ко­вая – ко­фер­мент). В ка­че­стве ко­фер­мен­та могут вы­сту­пать ви­та­ми­ны – E, K, B групп (рис. 2).

Рис. 2. Клас­си­фи­ка­ция фер­мен­тов по их со­ста­ву

Фер­мент вза­и­мо­дей­ству­ет с суб­стра­том, не всей мо­ле­ку­лой, а от­дель­ной её ча­стью – т. н. ак­тив­ным цен­тром.

 2. Механизм действия ферментов

Фер­мент вза­и­мо­дей­ству­ет с суб­стра­том и об­ра­зу­ет ко­рот­ко­жи­ву­щий фер­мент-суб­страт­ный ком­плекс.

По за­вер­ше­нии ре­ак­ции, фер­мент-суб­страт­ный ком­плекс рас­па­да­ет­ся на про­дук­ты и фер­мент.

Фер­мент в итоге не из­ме­ня­ет­ся: по окон­ча­нии ре­ак­ции он оста­ет­ся таким же, каким был до неё, и может те­перь вза­и­мо­дей­ство­вать с новой мо­ле­ку­лой суб­стра­та (рис. 3).

Рис. 3. Ме­ха­низм вза­и­мо­дей­ствия фер­мен­та и суб­стра­та

На ри­сун­ке 3 пред­став­лен ме­ха­низм ра­бо­ты фер­мен­та, в част­но­сти, об­ра­зо­ва­ния пеп­тид­ной связи между мо­ле­ку­ла­ми ами­но­кис­лот.

Две ами­но­кис­ло­ты вза­и­мо­дей­ству­ют между собой в ак­тив­ном цен­тре фер­мен­та, между ними об­ра­зу­ет­ся пеп­тид­ная связь.

Новое ве­ще­ство (ди­пеп­тид) по­ки­да­ет ак­тив­ный центр фер­мен­та, по­сколь­ку оно по своей струк­ту­ре не со­от­вет­ству­ет этому цен­тру.

Осо­бен­но­стью фер­мен­тов яв­ля­ет­ся то, что они об­ла­да­ют вы­со­кой спе­ци­фич­но­стью, т. е. могут уско­рять толь­ко одну ре­ак­цию или ре­ак­ции од­но­го типа.

В 1890 году Э. Г. Фишер пред­по­ло­жил, что эта спе­ци­фич­ность обу­слов­ле­на осо­бой фор­мой мо­ле­ку­лы фер­мен­та, ко­то­рая точно со­от­вет­ству­ет форме мо­ле­ку­лы суб­стра­та.

Эта ги­по­те­за по­лу­чи­ла на­зва­ние «ключа и замка», где ключ срав­ни­ва­ет­ся с суб­стра­том, а замок – с фер­мен­том. Ги­по­те­за гла­сит: суб­страт под­хо­дит к фер­мен­ту, как ключ под­хо­дит к замку.

 Из­би­ра­тель­ность дей­ствия фер­мен­та свя­за­на со стро­е­ни­ем его ак­тив­но­го цен­тра (рис. 4).

Рис. 4. Ги­по­те­за вза­и­мо­дей­ствия фер­мен­та и суб­стра­та по прин­ци­пу ключ-за­мок Э. Г. Фи­ше­ра

 3. Активность ферментов

В первую оче­редь, на ак­тив­ность фер­мен­та вли­я­ет тем­пе­ра­ту­ра. С по­вы­ше­ни­ем тем­пе­ра­ту­ры ско­рость хи­ми­че­ской ре­ак­ции воз­рас­та­ет.

Уве­ли­чи­ва­ет­ся ско­рость мо­ле­кул, у них по­яв­ля­ет­ся боль­ше шан­сов столк­нуть­ся друг с дру­гом. Сле­до­ва­тель­но, уве­ли­чи­ва­ет­ся ве­ро­ят­ность того, что ре­ак­ция между ними про­изой­дет.

Тем­пе­ра­ту­ра, обес­пе­чи­ва­ю­щая наи­боль­шую ак­тив­ность фер­мен­та – оп­ти­маль­ная.

За пре­де­ла­ми оп­ти­маль­ной тем­пе­ра­ту­ры ско­рость ре­ак­ции сни­жа­ет­ся вслед­ствие де­на­ту­ра­ции бел­ков. Когда тем­пе­ра­ту­ра сни­жа­ет­ся, ско­рость хи­ми­че­ской ре­ак­ции тоже па­да­ет. В тот мо­мент, когда тем­пе­ра­ту­ра до­сти­га­ет точки за­мер­за­ния, фер­мент инак­ти­ви­ру­ет­ся, но при этом не де­на­ту­ри­ру­ет (см. видео).

В наше время для дли­тель­но­го хра­не­ния про­дук­тов ши­ро­ко ис­поль­зу­ют спо­соб быст­ро­го за­мо­ра­жи­ва­ния. Оно оста­нав­ли­ва­ет рост и раз­ви­тие мик­ро­ор­га­низ­мов, а также инак­ти­ви­ру­ет фер­мен­ты, на­хо­дя­щи­е­ся внут­ри мик­ро­ор­га­низ­мов, и предот­вра­ща­ет раз­ло­же­ние про­дук­тов пи­та­ния.

Кроме этого, ак­тив­ность фер­мен­тов за­ви­сит ещё от pH среды (кис­лот­но­сти – то есть по­ка­за­те­ля кон­цен­тра­ции ионов во­до­ро­да).

В боль­шин­стве слу­ча­ев, фер­мен­ты ра­бо­та­ют при ней­траль­ном pH, т. е. при pH около 7. Но су­ще­ству­ют фер­мен­ты, ко­то­рые ра­бо­та­ют либо в кис­лой и силь­но­кис­лой, либо в ще­лоч­ной и силь­но­ще­лоч­ной среде.

На­при­мер, один из таких фер­мен­тов – пеп­син, он на­хо­дит­ся у нас с вами в же­луд­ке, ра­бо­та­ет в силь­но­кис­лой среде и рас­щеп­ля­ет белки.

По­сколь­ку в же­луд­ке среда до­ста­точ­но кис­лая, 1,5 – 2 pH, то этот фер­мент ра­бо­та­ет при силь­но­кис­лой среде.

Фер­мен­ты под­вер­же­ны дей­ствию ак­ти­ва­то­ров и ин­ги­би­то­ров. Неко­то­рые ионы, на­при­мер, ионы ме­тал­лов Mg, Mn, Zn ак­ти­ви­ру­ют фер­мен­ты. Дру­гие же ионы (к ним от­но­сят­ся ионы тя­же­лых ме­тал­лов, а имен­но Hg, Pb, Cd), на­о­бо­рот, по­дав­ля­ют ак­тив­ность фер­мен­тов, де­на­ту­ри­ру­ют их белки.

4. Классификация ферментов

В 1961 году была пред­ло­же­на си­сте­ма­ти­че­ская клас­си­фи­ка­ция фер­мен­тов на 6 групп. Но на­зва­ния фер­мен­тов ока­за­лись очень длин­ны­ми и труд­ны­ми в про­из­но­ше­нии, по­это­му фер­мен­ты при­ня­то сей­час име­но­вать с по­мо­щью ра­бо­чих на­зва­ний.

Ра­бо­чее на­зва­ние со­сто­ит из на­зва­ния суб­стра­та, на ко­то­рый дей­ству­ет фер­мент, и окон­ча­ния «аза» (рис. 5).

На­при­мер, если ве­ще­ство — лак­то­за, то есть мо­лоч­ный сахар, то лак­та­за – это фер­мент ко­то­рый его пре­об­ра­зу­ет.

Если са­ха­ро­за (обык­но­вен­ный сахар), то фер­мент, ко­то­рый его рас­щеп­ля­ет, – са­ха­ра­за. Со­от­вет­ствен­но, фер­мен­ты, ко­то­рые рас­щеп­ля­ют про­те­и­ны, носят на­зва­ние про­те­и­на­зы.

 5. Значение ферментов

Фер­мен­ты при­ме­ня­ют­ся прак­ти­че­ски во всех об­ла­стях че­ло­ве­че­ской де­я­тель­но­сти, и такое ши­ро­кое при­ме­не­ние, в первую оче­редь, свя­за­но с тем, что они со­хра­ня­ют свои уни­каль­ные свой­ства вне живых кле­ток.

Фер­мен­ты групп ами­лаз, про­те­аз и липаз при­ме­ня­ют­ся в ме­ди­цине. Они рас­щеп­ля­ют крах­мал, белки и жиры. Все эти фер­мен­ты, как пра­ви­ло, вхо­дят в со­став ком­би­ни­ро­ван­ных пре­па­ра­тов, таких как фе­стал и пан­зи­норм, и ис­поль­зу­ют­ся, в первую оче­редь, для ле­че­ния за­бо­ле­ва­ний же­лу­доч­но-ки­шеч­но­го трак­та (рис. 6).

Фер­мен­ты при­ме­ня­ют для рас­тво­ре­ния тром­бов в кро­ве­нос­ных со­су­дах, при ле­че­нии гной­ных ран.

Осо­бое место за­ни­ма­ет эн­зи­мо­те­ра­пия при ле­че­нии он­ко­ло­ги­че­ских за­бо­ле­ва­ний.

Такие фер­мен­ты как ами­ла­за рас­щеп­ля­ют крах­мал и по­это­му ши­ро­ко ис­поль­зу­ют­ся в пи­ще­вой про­мыш­лен­но­сти. В пи­ще­вой про­мыш­лен­но­сти ис­поль­зу­ет­ся про­те­и­на­за, рас­щеп­ля­ю­щая белки, и ли­па­зы, рас­щеп­ля­ю­щие жиры. Фер­мен­ты ами­ла­зы ис­поль­зу­ют­ся в хле­бо­пе­че­нии, ви­но­де­лии и пи­во­ва­ре­нии (см. видео).

Про­те­азы ис­поль­зу­ют­ся для смяг­че­ния мяса и при из­го­тов­ле­нии го­то­вых каш.

Ли­па­зы ис­поль­зу­ют­ся в про­из­вод­стве сыра.

Фер­мен­ты ши­ро­ко ис­поль­зу­ют­ся в кос­ме­ти­че­ской про­мыш­лен­но­сти, вхо­дят в со­став кре­мов, неко­то­рые фер­мен­ты вхо­дят в со­став сти­раль­ных по­рош­ков.

6. Из истории открытия ферментов

Фер­мен­ты были от­кры­ты при изу­че­нии про­цес­сов бро­же­ния. Пред­став­ле­ния о том, что хи­ми­че­ские про­цес­сы внут­ри живых ор­га­низ­мов про­те­ка­ют под дей­стви­ем ка­ких-то осо­бен­ных ве­ществ, воз­ник­ло более 200 лет назад. В XIX века Луи Па­стер (рис.

7) до­ка­зал, что сбра­жи­ва­ние дрож­жа­ми са­ха­ра в спирт ка­та­ли­зи­ру­ет­ся ве­ще­ства­ми бел­ко­вой при­ро­ды. Па­стер оши­боч­но счи­тал, что фер­мен­ты неот­де­ли­мы от живых кле­ток.

Дру­гой уче­ный, Эду­ард Бух­нер, до­ка­зал, что в вод­ных экс­трак­тах живых кле­ток на­хо­дит­ся набор фер­мен­тов, ка­та­ли­зи­ру­ю­щих пре­вра­ще­ние са­ха­ра в спирт. Имен­но его от­кры­тие дало на­ча­ло новой науке – эн­зи­мо­ло­гии.

Успе­хи эн­зи­мо­ло­гии во вто­рой по­ло­вине XX века при­ве­ли к тому, что в на­сто­я­щее время вы­де­ле­но и очи­ще­но более 2000 фер­мен­тов, ко­то­рые ис­поль­зу­ют­ся в раз­лич­ных от­рас­лях че­ло­ве­че­ской де­я­тель­но­сти.

 7. Энзимопатология

Эн­зи­мо­па­то­ло­гия – об­ласть эн­зи­мо­ло­гии, ко­то­рая изу­ча­ет связь между бо­лез­нью и недо­ста­точ­ным син­те­зом, или от­сут­стви­ем син­те­за ка­ко­го-ли­бо фер­мен­та.

На­при­мер, при­чи­ной на­след­ствен­но­го за­бо­ле­ва­ния – фе­нил­ке­то­ну­рии, ко­то­рое со­про­вож­да­ет­ся рас­строй­ством пси­хи­че­ской де­я­тель­но­сти, яв­ля­ет­ся по­те­ря клет­ка­ми пе­че­ни спо­соб­но­сти син­те­зи­ро­вать фер­мент, ка­та­ли­зи­ру­ю­щий пре­вра­ще­ние фе­нил­ала­ни­на в ти­ро­зин.

В ре­зуль­та­те в ор­га­низ­ме на­кап­ли­ва­ют­ся ток­си­че­ские ве­ще­ства. Но­во­рож­ден­ный ре­бе­нок вы­гля­дит здо­ро­вым, а пер­вые симп­то­мы фе­нил­ке­то­ну­рии про­яв­ля­ют­ся в воз­расте от двух до шести ме­ся­цев. Это вы­ра­жен­ная вя­лость, от­сут­ствие ин­те­ре­са к окру­жа­ю­ще­му миру, по­вы­шен­ная раз­дра­жи­тель­ность, а также бес­по­кой­ство и рвота.

Во вто­ром по­лу­го­дии жизни у ре­бен­ка вы­ра­же­но от­ста­ва­ние в пси­хи­че­ском раз­ви­тии. Менее чем в 10% слу­ча­ев – это сла­бая сте­пень оли­го­фре­нии, а у 60% раз­ви­ва­ет­ся иди­о­тия.

При свое­вре­мен­ной ди­а­гно­сти­ке па­то­ло­ги­че­ских из­ме­не­ний можно из­бе­жать, если с мо­мен­та рож­де­ния до на­ступ­ле­ния по­ло­во­го со­зре­ва­ния огра­ни­чить по­ступ­ле­ние фе­нил­ала­ни­на с пищей.

 8. Стиральные порошки с ферментами

На этом уроке мы с вами вы­яс­ни­ли, что фер­мен­ты ис­поль­зу­ют­ся в раз­лич­ных об­ла­стях че­ло­ве­че­ской де­я­тель­но­сти.

Они ши­ро­ко ис­поль­зу­ют­ся в пи­ще­вой про­мыш­лен­но­сти, в ме­ди­цине, в кос­ме­ти­ке и бы­то­вой химии.

На­при­мер, в сти­раль­ные по­рош­ки до­бав­ля­ют ами­ла­зу, ко­то­рая рас­щеп­ля­ет крах­мал, про­те­азы, рас­щеп­ля­ю­щие белки или бел­ко­вые за­гряз­не­ния, и ли­па­зы, очи­ща­ю­щие ткани от жира и масла.

Как пра­ви­ло, в со­став сти­раль­но­го по­рош­ка вхо­дит ком­би­на­ция этих фер­мен­тов, то есть фер­мент­ные пре­па­ра­ты уси­ли­ва­ют дей­ствие друг друга.

Се­год­ня наи­бо­лее изу­чен­ны­ми фер­мен­та­ми яв­ля­ют­ся про­те­азы и ами­ла­зы. Ли­па­зы не все­гда ста­биль­ны по ка­че­ству. Их раз­ра­бот­кой за­ни­ма­ют­ся толь­ко 10 лет, а ами­ла­за и про­те­аза су­ще­ству­ют на рынке уже более по­лу­ве­ка.

Се­год­ня эти две ка­те­го­рии фер­мен­тов очень хо­ро­шо изу­че­ны и дают пре­крас­ные ре­зуль­та­ты, чего пока что нель­зя ска­зать о ли­па­зах.

Ли­па­зы пол­но­стью справ­ля­ют­ся с за­гряз­не­ни­я­ми толь­ко после двух-трех сти­рок, а про­те­азы и ами­ла­зы – за одну.

Уче­ные под­счи­та­ли, что до­бав­ле­ние фер­мен­тов в сти­раль­ные по­рош­ки на 30-35% уве­ли­чи­ва­ет мо­ю­щую спо­соб­ность дан­но­го по­рош­ка.

Источник: https://100ballov.kz/mod/page/view.php?id=1593

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.